• 제목/요약/키워드: aluminate

검색결과 228건 처리시간 0.023초

LED용 SrAl2O4:Mn4+ 형광체 합성 및 발광특성 연구 (Synthesis and photoluminescence characteristics of SrAl2O4:Mn4+ phosphor for LED applications)

  • 최병수;이준호;황승구;김진곤;이병우;조현
    • 한국결정성장학회지
    • /
    • 제33권1호
    • /
    • pp.1-16
    • /
    • 2023
  • LED용 비희토류 기반 strontium-aluminate 계 적색 발광 형광체를 고상반응법으로 합성하였고, 합성온도 및 Mn4+ 활성제 첨가량이 형광체의 발광특성에 미치는 영향에 대하여 조사하였다. 합성된 SrAl2O4:Mn4+ 형광체는 330 및 460 nm 근처 파장에서 피크가 나타나는 근자외선 및 청색 영역의 광대역 흡광 특성과 644, 658, 및 673 nm 근처의 세 개의 피크로 이루어진 삼중밴드 형태의 deep red 발광 특성을 나타내었다. 합성온도 1600℃, 0.5 mol% Mn4+ 이온 첨가량에서 합성된 SrAl2O4:Mn4+ 형광체가 가장 우수한 발광 특성을 나타내었고, 0.7 mol% 이상의 첨가량에서는 농도소광이 관찰되었다. FE-SEM 및 DLS 입도크기분포 분석 결과 합성된 SrAl2O4:Mn4+ 형광체 2~6.4 ㎛의 입도 분포 및 불규칙한 구형을 나타내며 약 4 ㎛의 평균 입자 크기를 갖는 것으로 조사되었다.

Physicochemical properties of a calcium aluminate cement containing nanoparticles of zinc oxide

  • Amanda Freitas da Rosa;Thuany Schmitz Amaral;Maria Eduarda Paz Dotto;Taynara Santos Goulart;Hebert Luis Rossetto;Eduardo Antunes Bortoluzzi;Cleonice da Silveira Teixeira;Lucas da Fonseca Roberti Garcia
    • Restorative Dentistry and Endodontics
    • /
    • 제48권1호
    • /
    • pp.3.1-3.14
    • /
    • 2023
  • Objectives: This study evaluated the effect of different nanoparticulated zinc oxide (nano-ZnO) and conventional-ZnO ratios on the physicochemical properties of calcium aluminate cement (CAC). Materials and Methods: The conventional-ZnO and nano-ZnO were added to the cement powder in the following proportions: G1 (20% conventional-ZnO), G2 (15% conventional-ZnO + 5% nano-ZnO), G3 (12% conventional-ZnO + 3% nano-ZnO) and G4 (10% conventional-ZnO + 5% nano-ZnO). The radiopacity (Rad), setting time (Set), dimensional change (Dc), solubility (Sol), compressive strength (Cst), and pH were evaluated. The nano-ZnO and CAC containing conventional-ZnO were also assessed using scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. Radiopacity data were analyzed by the 1-way analysis of variance (ANOVA) and Bonferroni tests (p < 0.05). The data of the other properties were analyzed by the ANOVA, Tukey, and Fisher tests (p < 0.05). Results: The nano-ZnO and CAC containing conventional-ZnO powders presented particles with few impurities and nanometric and micrometric sizes, respectively. G1 had the highest Rad mean value (p < 0.05). When compared to G1, groups containing nano-ZnO had a significant reduction in the Set (p < 0.05) and lower values of Dc at 24 hours (p < 0.05). The Cst was higher for G4, with a significant difference for the other groups (p < 0.05). The Sol did not present significant differences among groups (p > 0.05). Conclusions: The addition of nano-ZnO to CAC improved its dimensional change, setting time, and compressive strength, which may be promising for the clinical performance of this cement.

pH 변화에 따른 고로수쇄 BFS의 초기 수화 특성 (Early Hydration Properties of BFS by a Change of pH)

  • 강현주;이웅걸;송명신;강승민;김경남
    • 한국세라믹학회지
    • /
    • 제49권5호
    • /
    • pp.442-447
    • /
    • 2012
  • This study investigated on the early hydration and physical characteristics of BFS by pH variation. NaOH solution was used as a pH activator. In the range from pH 12 to pH 14, Experiment was compared the hydration propertied of OPC(Ordinary Portland Cement) and BFS(Blast Furnace BFS) and BFS containing 2 wt% of gypsum. It was found that CAH(Calcium Aluminate Hydrates) phases and CSH(Calcium Silicate Hydrates) phases were formed during the early hydration of BFS, and that CAH phases, CSH phases and ettringites were formed during the early hydration of BFS containing 2 wt% of gypsum. Furthermore, early hydration of BFS and BFS containing 2 wt% of gypsum were faster then OPC at pH 14, and the 1 day compressive strength of BFS increased by approximately 30% compared to OPC, and BFS containing 2 wt% of gypsum also increased by approximately 40% compared to OPC.

해상풍력 발전기용 초고강도 그라우트 개발을 위한 기초적 연구 (Basic Study on Development of Ultra-high Strength Grout for Offshore Wind Turbines)

  • 임명관;하상수
    • KIEAE Journal
    • /
    • 제15권1호
    • /
    • pp.155-160
    • /
    • 2015
  • The annual average of energy sources is continuously increasing at a rate of 5.8%, and particularly, the power generation proportion of new/renewable energy is increasing significantly. Furthermore, South Korea has established a national energy master plan for 2008-2030 and is aiming at obtaining approximately 11% of total energy production from the wind turbine sector. Although offshore wind turbines are similar to wind turbines installed on land, they require materials with excellent dynamic properties and durability to prevent damage due to seawater at the lower parts and connecting parts. The lower parts of wind turbines are submerged in seawater, and the upper and lower parts are connected by filling the connecting part with grout. This paper describes the test results of the process of determining the mix ratios to develop ultra-high grout for offshore wind turbines. There is virtually no relevant technology regarding grout for offshore wind turbines in South Korea that can be referenced for the process of determining the mix ratios. Therefore, tests were conducted for determining compression strength, elastic modulus, flexural strength, density, constructability (floor test), and early strength by referencing a high-performance grout produced in South Korea, and the mixing process for achieving the goal strengths was described using the Korean Industrial Standards (KS) as the reference.

슬래그 엔지니어링에 의한 製銃 및 제강조업의 효율향상에 관한 연구 (Development of Iron and Steelmaking Processes by Slag Engineering Technology)

  • 박주현;민동준;송효석
    • 자원리싸이클링
    • /
    • 제10권3호
    • /
    • pp.37-42
    • /
    • 2001
  • 21세기 철강산업에 요구되는 경제성, 환경친화성, 고효율성을 동시에 만족하는 슬래그 정련조업 조건을 슬래그 엔지니어링 개념에 입각하여 평가하였다. 제선 공정의 경우, 기존의 슬래그 조성에서 염기도를 증가시킴으로써 우수한 로내 통액성 및 향상된 용선품질 확보가 가능할 것으로 평가되었으며, COREX 조업에서는 ($SiO_2$+ $A1_2$$O_3$) 농도를 소량 감소시킴으로써 보다 우수한 유동성 및 정련능 확보가 가능한 것으로 예측되었다. 한편, Stainless Steel-AOD공정의 경우, 소량의 CaO농도 증가를 통하여 현재보다 양호한 정련능 확보가 가능함을 알 수 있었으며, 슬래그 중 (CaO+$A1_2$$O_3$)농도 증가를 통해 $CaF_2$의 사용량 감소를 이룩할 수 있을 것으로 예측되었다.

  • PDF

분자동력학법에 의한(62-x)CaO·38Al2O3 ·xBaO 유리의 구조 분석 (A study on the Structure of (62-x)CaO·38Al2O3 ·xBaO Glasses by Molecular Dynamics Simulation)

  • 이성주;강은태
    • 한국세라믹학회지
    • /
    • 제44권3호
    • /
    • pp.175-181
    • /
    • 2007
  • Molecular dynamics simulation (MD) of $(62-x)CaO{\cdot}38Al_{2}O_{3}{\cdot}xBaO$ glasses has been carried out using empirical potentials with the covalent term. The simulations closely reproduce the total neutron correlation functions of glass with 5 mol% BaO and physical properties of these glasses such as elastic constants. For these glasses, aluminum is tetrahedrally coordinated by oxygen, but there is a part of five-fold and six-fold coordination of aluminum. There are no major changes to the mid-range structure of glass, as barium is substituted for calcium. To predict the barium coordination number, we have used the bond valence (BV) theory and also compared the results of simulation with Bond valence. The coordination number for oxygen around barium atoms is close to 8 and the average distance of barium and oxygen is nearly 2.80 A. The viscosity of these glasses increases with the content of barium oxide substituted for calcium oxide.

Microstructural properties of hardened cement paste blended with coal fly ash, sugar mill lime sludge and rice hull ash

  • Opiso, Einstine M.;Sato, Tsutomu;Otake, Tsubasa
    • Advances in concrete construction
    • /
    • 제5권3호
    • /
    • pp.289-301
    • /
    • 2017
  • The synergistic interactions of supplementary cementitious materials (SCMs) with ordinary portland cement (OPC) in multi-blended systems could enhance the mechanical and durability properties of concrete and increase the amount of cement that can be replaced. In this study, the characteristics of the hydration products as well as paste microstructure of blended cement containing 20% coal fly ash, 10% rice hull ash and 10% sugar mill lime sludge in quaternary blended system was investigated. Portlandite content, hydration products, compressive strength, pore size distribution and microstructural architecture of hydrated blended cement pastes were examined. The quaternary blended cement paste showed lower compressive strength, reduced amount of Portlandite phases, and higher porosity compared to plain hardened cement paste. The interaction of SCMs with OPC influenced the hydration products, resulting to the formation of ettringite and monocarboaluminate phases. The blended cement paste also showed extensive calcium silicate hydrates and calcium aluminate silicate hydrates but unrefined compared to plain cement paste. In overall, the expected synergistic reaction was significantly hindered due to the low quality of supplementary cementitious materials used. Hence, pre-treatments of SCMs must be considered to enhance their reactivity as good quality SCMs can become limited in the future.

열처리 분위기가 Eu 이온이 첨가된 Li-Al-O계 형광체 특성에 미치는 영향 (Effect of Heat-treatment Atmosphere on Photoluminescence of Eu-doped Li-Al-O System)

  • 김정석;천채일;채기웅
    • 한국세라믹학회지
    • /
    • 제51권1호
    • /
    • pp.25-31
    • /
    • 2014
  • New green phosphor is synthesized by reducing $LiAlO_2:xEu^{3+}$ phosphors in a low pressure $H_2$ atmosphere. The $LiAlO_2:xEu^{3+}$ prepared by a solid state reaction method is reported as red phosphor. The effect of the reduction treatment on the $LiAlO_2:xEu^{3+}$ on the crystalline phase change and photoluminescence (PL) property are characterized. The reduced phosphor had a broad green light spectrum centered at 524 nm. The PL intensity of the reduced phosphor increased to a maximum at the reduction temperature of $1100^{\circ}C$. The PL intensity decreased with a further increase in the reduction temperature. The crystalline phase constituting the reduced phosphor varied with the temperature. A new crystalline phase $Li_2Al_4O_7$ was observed at $1100^{\circ}C$. The origin of the green-light emission is discussed in relation to the crystalline phase change.

Mechanical Tenacity Analysis of Moisture Barrier Bags for Semiconductor Packages

  • Kim, Keun-Soo;Kim, Tae-Seong;Min Yoo;Yoo, Hee-Yeoul
    • 마이크로전자및패키징학회지
    • /
    • 제11권1호
    • /
    • pp.43-47
    • /
    • 2004
  • We have been using Moisture Barrier Bags for dry packing of semiconductor packages to prevent moisture from absorbing during shipping. Moisture barrier bag material is required to be waterproof, vapor proof and offer superior ESD (Electro-static discharge) and EMI shielding. Also, the bag should be formed easily to the shape of products for vacuum packing while providing excellent puncture resistance and offer very low gas & moisture permeation. There are some problems like pinholes and punctured bags after sealing and before the surface mount process. This failure may easily result in package pop corn crack during board mounting. The bags should be developed to meet the requirements of excellent electrical and physical properties by means of optimization of their raw material composition and their thickness. This study investigates the performance of moisture barrier bags by characterization of their mechanical endurance, tensile strength and through thermal analysis. By this study, we arrived at a robust material composition (polyester/Aluminate) for better packing.

  • PDF

이산화탄소 저감형 시멘트 함량에 따른 경량기포 콘크리트의 물성평가 (Effect of Carbon Dioxide-reduced Cement on Properties of Lightweight-foamed Concrete)

  • 임동혁;이원기
    • 한국환경과학회지
    • /
    • 제29권6호
    • /
    • pp.605-612
    • /
    • 2020
  • To improve the initial strength and stability of lightweight-foamed concrete, which shows suitable sound absorption and insulation characteristics, the effect of CO2-reduced cement on the properties of the concrete was investigated. Various mixing ratios were applied by substituting a certain amount of slag and Calcium Sulfo Aluminate (CSA) in CO2-reduced Ordinary Portland Cement (OPC) and the physical properties of the samples were examined using the Korean Standard. The kiln temperatures of the CSA were 100-200℃ ; these values are lower than those of OPC and can lead to energy saving. In addition, the low limestone content reduces greenhouse gas emissions by 20 %. Adding a small amount of CSA in OPC content activates Ca-Al-H2-based hydrates, and the initial compressive strength of the concrete is improved. As the CSA content increased, the thermal conductivity of the concrete decreased by up to 8% compared to plain concrete, thus indicating an improvement in its insulation. Therefore, the settlement stability was improved as the addition of CSA shortened the setting time.