• Title/Summary/Keyword: alumina size

Search Result 463, Processing Time 0.023 seconds

Thermal Spalling and Resistance to Slag Attack in Porous High Alumina Ceramic (According to Pore Size) (고Alumina질 다공성 세라믹스의 내열충격성 및 내Slag성 (기공크기에 따른))

  • 김병훈;나용한
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.9
    • /
    • pp.747-753
    • /
    • 1993
  • The investigation was carried out to study the behaviors of the pore size and porosity, the mechanical strength, the resistance to thermal spallings and slag attacks according to particle sizes of starting raw materials in porous high Alumina ceramics. This porous ceramics have been used in processing of the clean steel by the blowing of the inert gas. The required properties in the practice are the suitable pores size, the sharp pores distribution for a uniform blowing of the gas, the strong corrosion resistance to slags and molten metals and the resistance to thermal spalling. The optimized properties in porous high alumina ceramics of the specimen No. 3 was found to be the very low slag intrusion and the superior resistance to thermal spalling because of the suitable pore size of 2.5${\mu}{\textrm}{m}$, the porosity of 30% and the high sinterability.

  • PDF

The fabrication of micro- size conductor lines on alumina patterned by laser ablation (레이저 직접 묘화법에 의한 알루미나 기판위의 미세 전도성 패턴 제작)

  • 김혜원;이제훈;신동식;강성군
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1889-1892
    • /
    • 2003
  • The fabrication of micro-size patterning on alumina substrate is generated by laser direct writing, which has high precision and selectivity of various laser beam energies. The depth and width of patterns is affected by laser parameter such as laser power, scan rate. Through the chemical and mechanical polishing Pd seeds was effectively got rid of alumina substrate for selectivity electroless Ni plating. Thermal treatment is good method for changing electrical property of conductor line, because the treatment can control of the grain size.

  • PDF

Packing of Alumina Particles in 3D Preform of Mullite Fiber by Slurry Pressure-Infiltration (슬러리 가압함침에 의한 3D Mullite 섬유 Preform의 알루미나 입자 충전)

  • Sim, Soo-Man
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.528-532
    • /
    • 2013
  • Well-dispersed slurries of submicron-sized alumina powders were pressure-infiltrated in 3D preforms of mullite fibers and the effects of the particle size and infiltration pressure on the particle packing characteristics were investigated. Infiltration without pressure showed that the packing density increased as the particle size decreased due to the reduction of the friction between the particles and the fibers. The infiltrated preforms contained large pores in the large voids between the fiber tows and small pores in the narrow voids between the individual fibers. Pressure infiltration resulted in a packing density of 77% regardless of the particle size or the infiltration pressure(210 ~ 620 kPa). Pressure infiltration shortened the infiltration time and eliminated the large pores in preforms infiltrated with the slurries of smaller particles. The slurry pressure-infiltration process is thus an efficient method for the packing of matrix materials in various preforms.

A Study on the Thermal Properties of Epoxy/Micro-Nano Alumina Composites, as Mixture of Surface Modified Nano Alumina (표면개질된 나노알루미나를 혼합한, 에폭시/마이크로-나노알루미나 콤포지트의 열적특성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1504-1510
    • /
    • 2016
  • The aim of this study is to improve properties both glass transition temperature($T_g$) and coefficient of thermal expansion(CTE) using epoxy/micro-nano alumina composites with adding glycerol diglycidyl ether (GDE:1,2,3,5g). This paper deals with the effects of GDE addition for epoxy/micro alumina contents (40, 50, 60wt%)+surface modified nano alumina(1_phr) composites. 20 kinds specimen were prepared with containing micro, nano alumina and GDE as a micro composites(10, 20, 30, 40, 50, 60, 70wt%) or a nano/micro alumina composites(1phr/40, 50, 60wt%). Average particle size of nano and micro alumina used were 30nm and $1{\sim}2{\mu}m$, respectively. The micro alumina used were alpha phase with Heterogeneous and nano alumina were gamma phase particles of spherical shape. The glass transition temperature and coefficients of thermal expansion was evaluated by DSC and TMA. The glass transition temperature decreased and coefficients of thermal expansion become smaller with filled contents of epoxy/micro alumina composites. On the other hand, $T_g$ and CTE as GDE addition variation(1,2,3,5g) of epoxy/micro-nano alumina composites decreased and increased respectively.

The AC Insulation Breakdown Properties of Epoxy/Multi-Alumina Composites for Adding Surface Modified Nano Alumina (표면처리된 나노알루미나가 첨가된 에폭시/멀티-알루미나 콤포지트의 교류절연파괴 특성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1511-1517
    • /
    • 2016
  • The aim of this study is to improve of properties for electrical AC insulation breakdown strength using epoxy/micro-nano alumina composites with adding glycerol diglycidyl ether (GDE:1,3,5g). This paper deals with the effects of GDE addition for epoxy/micro alumina contents (40,50,60wt%)+surface modified nano alumina(1_phr) composites. 14 kinds specimen were prepared with containing epoxy resins, epoxy micro composites and epoxy nano-micro alumina mixture composites. Average particle size of nano and micro alumina used were 30nm and $1{\sim}2{\mu}m$, respectively. The micro alumina used were alpha phase with Heterogeneous and nano alumina were gamma phase particles of spherical shape. The electrical AC insulation breakdown strength was evaluated by sphere to sphere electrode system and raising velocity 1kV/s. The AC breakdown strength decreased insulation properties of multi-composites according to increasing micro alumina and GDE addition contents.

Processing and Microstructure of Alumina Coated with $Al_2O_3$/SiC Nanocomposite

  • Ha, Jung-Soo;Kim, C-S.;D-S. Cheong
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.19-22
    • /
    • 1997
  • The surface modificaion of alumina by $Al_2$O$_3$/SiC nanocomposite coating was studied in terms of processing and microstructure. A powder slurry of 5 vol% SiC composition was dipcoated onto presintered alumina bodies and pressurelessly sintered at 1$700^{\circ}C$ for 2 h in $N_2$. The used of organic binder and plasticizer in the slurry preparation, and the control of the density of presintered alumina body were found to be necessary to avoid cracking and warping during processing. The nanocomposite coating well bonded to the alumina body with thickness about 110 ${\mu}{\textrm}{m}$. The average grain size of coating (2 ${\mu}{\textrm}{m}$) was much finer than that of alumina body (13 ${\mu}{\textrm}{m}$). Fracture surface observations revealed mostly transgranular fracture for the coating, whereas intergranular fracture for the alumina body. Some pores (about 6%) were observed in the coating layer, although the alumina body showed fully dense microstructure.

  • PDF

Dielectric Properties of Epoxy-Nano Composites for Surface Modified Nano Alumina (표면개질된 나노 알루미나의 에폭시-나노 콤포지트 유전 특성)

  • Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.10
    • /
    • pp.613-619
    • /
    • 2016
  • The aim of this study is to improve of dielectric properties using epoxy/nano alumina composites with adding glycerol diglycidyl ether (GDE:1,2 g). This paper deals with the effects of dielectric properties(${\epsilon}^{\prime}_r$ and $tan{\delta}$) for epoxy/nano alumina contents (1,3 phr) and GDE addition (1,2 g)composites. 5 kinds specimen were prepared with containing epoxy resins, epoxy nano alumina composites. Average particle size of nano used were 30 nm. The nano alumina used were gamma phase particles of spherical shape. The suppression of epoxy chain motion by addition of nano alumina+GDE decreased dielectric loss and relative permittivity magnitude.

Electrical Insulation Breakdown Strength in Epoxy/Spherical Alumina Composites for HV Insulation

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.2
    • /
    • pp.105-109
    • /
    • 2013
  • In order to develop high voltage (HV) insulation materials, epoxy/spherical alumina composites with two different particle sizes (in ${\mu}m$) were prepared and a dynamic mechanical analysis (DMA) and electrical insulation breakdown strength test were carried out in sphere-sphere electrodes and the data were estimated using Weibull statistical analysis. Alumina content varied from 50 to 70 wt%. The electrical insulation breakdown strength for epoxy/alumina (50 wt%) was 44.0 kV/1 mm and this value decreased with increasing alumina content. The effects of insulation thickness and alumina particle size on the insulation breakdown strength were also studied. The insulation thickness varied from 1 mm to 3 mm, and the particle sizes were 7.3 or $40.3{\mu}m$.

A Study on the Preparation of Alumina Powders from Bauxite by Wet Acid Process and Their Utilization (III) : Effects of the Dispersion of Aluminum Hydrate Gel on the Sintering Behavior of Alumina Powder (Bauxite로부터 습식 산처리법에 의한 알루미나 분체의 제조 및 그 이용에 관한 연구(III) : Aluminum Hydrate Gel의 분산에 의한 알루미나 분체의 소결성 향상)

  • 조철구;정원도;배원태
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.4
    • /
    • pp.299-308
    • /
    • 1993
  • Dispersant was used to avoid the agglomeration of aluminum hydrate precipitate and improve the sinterability of calcined alumina powder. The mean particle size of the aluminum hydrate precipitates was 0.26${\mu}{\textrm}{m}$ and 0.44${\mu}{\textrm}{m}$ when ball-milled with and without dispersant, respectively. After calcination at 110$0^{\circ}C$ for 5 hours, the size of the alumina powder without dispersant increased to 0.84${\mu}{\textrm}{m}$, while with dispersant slightly decreased to 0.22${\mu}{\textrm}{m}$. The most thermally active alumina powder was obtained from the sample calcined at 110$0^{\circ}C$ for 5 hours with the 1% dispersant concentration. Using the calcined alumina powder at the above optimized condition, the specimen showed fired density of 3.94g/㎤, 4-point MOR of 364MPa, and KIC of 3.26MPam1/2 after sintered at 155$0^{\circ}C$ for 3 hours.

  • PDF

Preparation of Spherical Alumina Particle from Aluminum Iso-Propoxide (Aluminum Iso-Propoxide에 의한 구형 알루미나 분체의 제조)

  • Lee, Jin-Hwa;Nam, Ki-Dae;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.163-170
    • /
    • 1999
  • Spherical alumina powders were prepared by the controlled hydrolysis of aluminum iso-propoxide in a solution consisting of n-octyl alcohol and acetonitrile. As aluminum alkoxide's concentration increased, the particle size was increased and size distribution was more broad. As-prepared particle morphology was not spherical when acetonitrile volume fraction was increased over than 60%. As-prepared amorphous powders crystallized to ${\gamma}$-alumina at $1000^{\circ}C$ and converted to ${\alpha}$-alumina at $1150^{\circ}C$. The particle morphology was retain after crystallization ${\alpha}$-alumina. When aluminum iso-propoxide was used as aluminum source, the optimum preparation condition of spherical alumina was 0.1M AIP, 0.2M H2O, $0.1g/{\ell}$ HPC with a volume fraction (1/1) of the n-octyl alcohol/acetonitrile, 10min of reaction time and 30min of aging time.