• 제목/요약/키워드: alumina particle

검색결과 297건 처리시간 0.024초

Carbonate 침전법을 이용한 α-알루미나의 나노파티클 코팅 (Nano Particle Coatings on α-alumina Powders by a Carbonate Precipitation)

  • 임종민;김상우
    • 한국분말재료학회지
    • /
    • 제14권2호
    • /
    • pp.145-149
    • /
    • 2007
  • Nanocrystalline transient aluminas (${\gamma}$-alumina) were coated on core particles (${\gamma}$-alumina) by a carbonate precipitation and thermal-assisted combustion, which is environmentally friend. The ammonium aluminum carbonate hydroxide (AACH) as a precursor for coating of transient aluminas was produced from precipitation reaction of ammonium aluminum sulfate and ammonium hydrogen carbonate. The crystalline size and morphology of the synthetic, AACH, were greatly dependent on pH and temperature. AACH with a size of 5 nm was coated on the core alumina particle at pH 9. whereas rod shape and large agglomerates were coated at pH 8 and 11, respectively. The AACH was tightly bonded coated on the core particle due to formation of surface complexes by the adsorption of carbonates, hydroxyl and ammonia groups on the surface of the core alumina powder. The synthetic precursor successfully converted to amorphous- and ${\gamma}$-alumina phase at low temperature through decomposition of surface complexes and thermal-assisted phase transformation.

Investigation of Thermal Conductivity and Convective Heat Transfer of Alumina Nanofluids under Laminar Flow

  • Seung-Il, Choi;Hafizur-Rehman, Hafizur-Rehman;Eom, Yoon-Sub;Ji, Myoung-Kuk;Kim, Jun-Hyo;Chung, Han-Shik;Jeong, Hyo-Min
    • 동력기계공학회지
    • /
    • 제17권2호
    • /
    • pp.78-86
    • /
    • 2013
  • In this research, dilute colloidal suspension alumina nanofluids were prepared by dispersing alumina nanoparticles in DI water and ethylene glycol as base fluids. Particle size analyzer and TEM test results revealed that the size of the alumina nanofluids(3wt% and 5wt%) with dispersion time 3hrs were 46nm and 60nm respectively. Thermal conductivity of these alumina nanofluids was measured by means of hot wire technique using a LAMBDA system. For water based alumina nanofluids, thermal conductivity enhancement was from 2.29% to 3.06% with 5wt% alumina at temperatures ranging from 15 to $40^{\circ}C$. Whereas in case of ethylene glycol based alumina nanofluids under the same temperature range, thermal conductivity enhancement was from 9.6% to 10% with 5wt% alumina. An enhancement of 37% average convective heat transfer was achieved with 5wt% alumina nanofluids at Re of 1,100.

형상 계수를 이용한 알루미나 입자구름의 열복사 예측 기법 연구 (A Study of Thermal Radiation from The Alumina Particle Cloud in The Plume Using View Factor Method)

  • 고주용;김인선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2044-2049
    • /
    • 2007
  • In order to predict the thermal radiation induced from alumina particle cloud in the plume of solid propellant motor, view factor method is applied to space shuttle SRB and the result is compared with that of monte carlo method. For this purpose, radiative characteristics, such as particle cloud temperature distribution, effective emissivity or emissive power of particle cloud are studied. In the case of effective emissivity, inverse wavelength method is applied and plume reduction characteristic length is used for emissive power distribution. As a result, thermal radiation using view factor method gives more conservative results than that using monte carlo method. So it can be used for preliminary design of thermal protection system.

  • PDF

슬러리 가압함침에 의한 3D Mullite 섬유 Preform의 알루미나 입자 충전 (Packing of Alumina Particles in 3D Preform of Mullite Fiber by Slurry Pressure-Infiltration)

  • 심수만
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.528-532
    • /
    • 2013
  • Well-dispersed slurries of submicron-sized alumina powders were pressure-infiltrated in 3D preforms of mullite fibers and the effects of the particle size and infiltration pressure on the particle packing characteristics were investigated. Infiltration without pressure showed that the packing density increased as the particle size decreased due to the reduction of the friction between the particles and the fibers. The infiltrated preforms contained large pores in the large voids between the fiber tows and small pores in the narrow voids between the individual fibers. Pressure infiltration resulted in a packing density of 77% regardless of the particle size or the infiltration pressure(210 ~ 620 kPa). Pressure infiltration shortened the infiltration time and eliminated the large pores in preforms infiltrated with the slurries of smaller particles. The slurry pressure-infiltration process is thus an efficient method for the packing of matrix materials in various preforms.

Post Ru CMP Cleaning for Alumina Particle Removal

  • Prasad, Y. Nagendra;Kwon, Tae-Young;Kim, In-Kwon;Park, Jin-Goo
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.34.2-34.2
    • /
    • 2011
  • The demand for Ru has been increasing in the electronic, chemical and semiconductor industry. Chemical mechanical planarization (CMP) is one of the fabrication processes for electrode formation and barrier layer removal. The abrasive particles can be easily contaminated on the top surface during the CMP process. This can induce adverse effects on subsequent patterning and film deposition processes. In this study, a post Ru CMP cleaning solution was formulated by using sodium periodate as an etchant and citric acid to modify the zeta potential of alumina particles and Ru surfaces. Ru film (150 nm thickness) was deposited on tetraethylorthosilicate (TEOS) films by the atomic layer deposition method. Ru wafers were cut into $2.0{\times}2.0$ cm pieces for the surface analysis and used for estimating PRE. A laser zeta potential analyzer (LEZA-600, Otsuka Electronics Co., Japan) was used to obtain the zeta potentials of alumina particles and the Ru surface. A contact angle analyzer (Phoenix 300, SEO, Korea) was used to measure the contact angle of the Ru surface. The adhesion force between an alumina particle and Ru wafer surface was measured by an atomic force microscope (AFM, XE-100, Park Systems, Korea). In a solution with citric acid, the zeta potential of the alumina surface was changed to a negative value due to the adsorption of negative citrate ions. However, the hydrous Ru oxide, which has positive surface charge, could be formed on Ru surface in citric acid solution at pH 6 and 8. At pH 6 and 8, relatively low particle removal efficiency was observed in citric acid solution due to the attractive force between the Ru surface and particles. At pH 10, the lowest adhesion force and highest cleaning efficiency were measured due to the repulsive force between the contaminated alumina particle and the Ru surface. The highest PRE was achieved in citric acid solution with NaIO4 below 0.01 M at pH 10.

  • PDF

용융침투법으로 제조한 유리-알루미나 복합체: Ⅰ. 알루미나 입도 효과 (Glass-alumina Composites Prepared by Melt-infiltration: Ⅰ. Effect of Alumina Particle Size)

  • 이득용;장주웅;김대준;박일석;이준강;이명현;김배연
    • 한국세라믹학회지
    • /
    • 제38권9호
    • /
    • pp.799-805
    • /
    • 2001
  • 상용 알루미나 분말(0.5${\mu}$m, 3${\mu}$m)을 die-press법을 이용하여 1120$^{\circ}$C에서 2시간 1차 소결하여 다공성 전성형체를 제조하고 1100$^{\circ}$C에서 4시간 $La_2O_3-Al_2O_3-SiO_2$계 유리를 용융 침투시켜 치밀한 유리-알루미나 복합체를 제조하였다. 알루미나 입도가 유리-알루미나 복합체의 충진율, 미세조직, 젖음성, 기공률 및 크기, 기계적 특성에 미치는 영향을 조사하였다. 입도 범위가 0.1∼48${\mu}$m로 넓고 bimodal size 입도 분포를 가지면서 random orientation을 가진 3${\mu}$m 알루미나가 분산된 복합체가 최적의 기계적 특성 및 충진률이 관찰되었으며 강도와 인성값은 각각 519MPa, $4.5MPa{\cdot}m^{1/2}$이었다.

  • PDF

수계공정에 의한 알루미나 테이프로 제조한 세라믹 인공치관용 알루미나 유리 복합체의 기계적 물성 (Mechanical Properties of Alumina-Glass Dental Composites Prepared from Aqueous-Based Tape Casting)

  • 이명현;김대준;이득용;이정훈;김창은
    • 한국세라믹학회지
    • /
    • 제36권10호
    • /
    • pp.1123-1131
    • /
    • 1999
  • Alumina-glass composites which are considered as the material of the choice for all dental crown was prepared by aqeous-based tape casting and sintering for 2h at 1120$^{\circ}C$ followed by glass infiltration for 2h at 1100$^{\circ}C$ Biaxial strength and fracture toughness of the composites were evaluated to determine the optimum composition of the tape as a function of the amount of constituent such as alumina binder and plasticizer. The strength and the fracture toughness of the alumina tape increased with increasing the contents of alumina and binder. These observations are consistent with in fluence of the constituents on mean alumuna particle distance in tapes suggesting that high strength of the glass infiltrated alumina composites is related to toughening by crack bowing. The biaxial strength and the fracture toughness of the composite containing the optimum constituent composition were 523 MPa and 3.3 MPa$.$1/2 respectively.

  • PDF

도핑된 알루미나 여과막의 미세구조 변화 (Microstructural Change of Doped-Alumina Membrane)

  • 이진하;최성철;한경섭
    • 한국세라믹학회지
    • /
    • 제36권10호
    • /
    • pp.1040-1047
    • /
    • 1999
  • After alumina sol was prepared by Yoldas process supported membranes were fabricated by adding ce and Re solution and SiO2 sol into alumina sol. The particle size of alumina sol was 11 nm and it was monodispersed transparent and stable for long time. The pore size of un-doped membrane started to increase to about 7,5nm at 1000$^{\circ}C$ and it was grown to twice (about 15nm) at 1100$^{\circ}C$ However the pore size of doped alumina was uniform to 1100$^{\circ}C$. The effect of retardation of grain growth was superior in SiO2 addition to that of Ce and Ru Because SiO2 doped samples transformed to needed-like phase and densified at 1200$^{\circ}C$ their application in membranes was limited. Ce and Ru doped sample showed vermicular structure identical to the un-doped ones at 1200$^{\circ}C$ But the particle size was smaller than that of un-doped ones.

  • PDF

겔-케스팅한 알루미나 성형체에서 출발입도가 공정변수 및 성형 미세구조에 미치는 영향 (Effects of particle size on processing variables and green microstructure in gelcast alumina green bodies)

  • 하창기;김재원;조창용;백운규;정연길
    • 한국재료학회지
    • /
    • 제11권10호
    • /
    • pp.869-878
    • /
    • 2001
  • Alumina $(Al_2O_3)$ green bodies were fabricated by gel-casting using three kinds of alumina with different particle size (mean particle size: 4.6 $\mu\textrm{m}$, 0.32 $\mu\textrm{m}$, 10nm). The effects of particle size on gel-casting process and green microstructure were investigated. The optimum dispersion conditions using ammonium salt (D-3019) as dispersant were 0.2 wt% (4.63 $\mu\textrm{m}$), 0.5 wt% (0.32 $\mu\textrm{m}$), and 5.0 wt% (10 nm), in high solid loading. The optimum solid loading of each starting material for gel-casting was obtained as 59 vol% (4.63 $\mu\textrm{m}$), 57 vol% (0.32 $\mu\textrm{m}$), 15 vol% (10 nm), depending on particle size, indicating that nano-size particle (10 nm) represent lower solid loading as high specific surface area than those of other two starting materials. The drying at ambient conditions (humidity; $\thickapprox$90%) was performed more than 48hrs to enable ejection of the part from the mold and then at $120^{\circ}C$ for 2hrs in an air oven, showing no crack and flaw in the dried green bodies. The pore size and distribution of the gelcast green bodies showed the significant decrease with decreasing particle size. Green microstructure was dependent on the pore size and distribution due to the particle size, and on the deairing step. The green density maximum obtained was 58.9% (4.63 $\mu\textrm{m}$), 60% (0.32 $\mu\textrm{m}$), 47% (10 nm) theoretical density (TD), and the deairing step applied before gel-casting did not affect green density.

  • PDF

용융침투법으로 제조한 유리-알루미나 복합체: II. Kinetic 연구 (Glass-alumina Composites Prepared by Melt-infiltration: II. Kinetic Studies)

  • 이득용;장주웅;이명현;이준강;김대준;박일석
    • 한국세라믹학회지
    • /
    • 제39권2호
    • /
    • pp.145-152
    • /
    • 2002
  • 상용 알루미나 분말(0.5, 2.8, 12, 45 ${\mu}m$)을 die-press법을 이용하여 1120$^{\circ}C$에서 2시간 1차 소결하여 다공성 전성형체를 제조하고 1100$^{\circ}C$에서 0∼2시간까지 $La_2O_3-Al_2O_3-SiO_2$계 유리를 용융 침투시켜 유리 침투 깊이와 침투 시간간의 kinetic을 조사하였다. 침투시간이 증가할수록 유리 침투깊이는 Washburn 식의 포물선 관계를 가지면서 증가하였으며 침투 상수인 K는 알루미나 입도가 증가할수록 증가하였다. 유리-알루미나 복합체의 강도값은 2.8${\mu}m$ 알루미나가 분산된 복합체까지 충진률의 증가로 인하여 증가하다가 알루미나 입도가 증가할수록 감소하였다. 파괴인성은 알루미나 입도가 증가할수록 균열 휨 현상과 균열과 알루미나 입자간 결합에 의하여 증가하였다.