• Title/Summary/Keyword: alumina membrane

Search Result 163, Processing Time 0.016 seconds

Humidity-Sensitive Characteristics and Reliabilities of Polymeric Humidity Sensor Containing Phosphonium Salts (포스포늄 염을 가진 고분자 습도센서의 감습 특성 및 신뢰성)

  • Kim, Ohyoung;Gong, Myoung-Seon
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.554-560
    • /
    • 1998
  • Vinylbenzyl triphenyl phosphonium chloride(VTPC)/styrenes=3.7 copolymer was prepared for the moisture-absorptive polyelectrolyte dew sensor containing phosphonium salts. The humid membrane was fabricated on the gold/alumina electrode by dipping. The impedances were $11M{\Omega}$, $980k{\Omega}$, $50k{\Omega}$, and $11k{\Omega}$ at 70%RH, 80%RH, 90%RH and 95%RH, respectively, at $25^{\circ}C$ and the humidity-sensitive charactristic was suitable for the dew sensor. The temperature-dependent coefficient between $15^{\circ}C$ and $35^{\circ}C$ was found to be $-0.25%RH/^{\circ}C$ and the hysteresis falled in the ${\pm}2%RH$ range. The response time was found to be 45 sec for the relative humidity ranging from 70%RH to 98%RH at $25^{\circ}C$. The reliabilities such as temperature cycle, humidity cycle, high temperature and humidity resistance, electrical load stability, stability of long-term storage and water durability were measured and evaluated for the application as a dew sensor.

  • PDF

Pervaporation Characteristics of Water/Ethanol and Water/Isopropyl Alcohol Mixtures through Zeolite 4A Membranes: Activity Coefficient Model and Maxwell Stefan Model (제올라이트 4A 분리막을 이용한 물/에탄올, 물/이소프로필알코올 혼합물의 투과증발 특성 연구 : 활동도계수모형 및 Generalized Maxwell Stefan 모형)

  • Oh, Woong Jin;Jung, Jae-Chil;Lee, Jung Hyun;Yeo, Jeong-gu;Lee, Da Hun;Park, Young Cheol;Kim, Hyunuk;Lee, Dong-Ho;Cho, Churl-Hee;Moon, Jong-Ho
    • Clean Technology
    • /
    • v.24 no.3
    • /
    • pp.239-248
    • /
    • 2018
  • In this study, pervaporation experiments of water, ethanol and IPA (Isopropyl alcohol) single components and water/ethanol, water/IPA mixtures were carried out using zeolite 4A membranes developed by Fine Tech Co. Ltd. Those membranes were fabricated by hydrothermal synthesis (growth in hydrothermal condition) after uniformly dispersing the zeolite seeds on the tubular alumina supports. They have a pore size of about $4{\AA}$ by ion exchange of $Na^+$ to the LTA structure with Si/Al ratio of 1.0, and shows strong hydrophilic property. Physical characteristics of prepared membranes were evaluated by using SEM (surface morphology), porosimetry (macro- or meso- pore analysis), BET (micropore analysis), and load tester (compressive strength). Pervaporation experiments with various temperature and concentration conditions confirmed that the zeolite 4A membrane can selectively separate water from ethanol and IPA. Water/ethanol separation factor was over 3,000 and water/IPA separation factor was over 1,500 (50 : 50 wt%, initial feed concentration). Pervaporation behaviors of single components and binary mixtures were predicted using ACM (activity coefficient model), GMS (generalized Maxwell Stefan) model and DGM (Dusty Gas Model). The adsorption and diffusion coefficients of the zeolite top layer were obtained by parameter estimation using GA (Genetic Algorithm, stochastic optimization method). All the calculations were carried out using MATLAB 2018a version.

Self-Curable Humidity-Sensitive Polyelectrolytes Attached to the Alumina Substrate for the Humidity Sensor and their Stability in Water (알루미나 기재에 부착된 습도센서용 자기 가교형 감습성 전해질 고분자의 내수성)

  • Han, Dae-Sang;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.313-320
    • /
    • 2010
  • New cinnamate group-containing copolymers for a self-curable, humidity-sensitive polyelectrolyte and polymeric anchoring agents were prepared by copolymerization of [2-[(methacryloyloxy) ethyl]dimethyl]propyl ammonium bromide(MEPAB), methyl methacrylate(MMA), 3-(trimethoxysilyl) propyl methacrylate(TMSPM) and 2-(cinnamoyloxy)ethyl methacrylate(CEMA). Photocrosslinkable copolymer composed of MEPAB/MMA/TMSPM/CEMA=70/20/0/10 were used for humidity-sensitive membrane, and those of 50/0/20/30 and 0/0/50/50 were used for polymeric anchoring agents. 3- (Triethoxysilyl)propyl cinnamate(TESPC) was also used as a surface-pretreating agent for the comparison of capability of attachment of polyelectrolyte to the electrode surface with polymeric photocurable silanecoupling agents. Pretreatment of the electrode substrate with anchoring agents was performed to form a cinnamate thin film on the electrode through covalent bonds. When the sensors were irradiated with UV light, the anchoring of a polyelectrolyte into the substrate was carried out via the [2$\pi$+2$\pi$] cycloaddition. The resulting sensors using polymeric anchoring agents and TESPC showed water durability with increase of resistance by 60~85%, which is corresponding to the reduction of 2.25~3.15%RH, after soaking in water for 24 h. They showed good hysteresis (-0.2%RH), response time (90 sec) and long-term stability at high temperature and humidity.