• Title/Summary/Keyword: alumina ceramic

Search Result 880, Processing Time 0.027 seconds

Electrical Properties of BaTiO3 Thick Films Fabricated by Screen-printing Method

  • Ahn, Byeong-Lib;Lee, Sung-Gap
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.149-152
    • /
    • 2007
  • [ $(Ba_{0.6}Sr_{0.3}Ca_{0.1})TiO_3$ ](BSCT) thick films doped with 0.1 mol% $MnCO_3\;and\;Yb_2O_3(0.1{\sim}0.7mol%)$ were fabricated by the screen printing method on the alumina substrates. And the structural and electrical properties as a function of $Yb_2O_3$ amount were investigated. The exothermic peak was observed at around $680^{\circ}C$ due to the formation of the poly crystalline perovskite phase. The lattice constants of the BSCT thick film doped with 0.7 mol% is 0.3994 nm. The specimen doped with 0.7 mol% $Yb_2O_3$ showed dense and uniform grains with diameters of about $4.2{\mu}m$. The average thickness of all BSCT thick films was approximately $70{\mu}m$. Relative dielectric constant and dielectric loss of the specimen doped with 0.7 mol% $Yb_2O_3$ were 2823 and 3.4%, respectively. The Curie temperature of the BSCT thick films doped with 0.1 mol% $Yb_2O_3$ was $46^{\circ}C$.

Thickness Dependence of GZO Gas Sensing Films Deposited on LTCC Substrates (LTCC 기판상에 증착한 GZO 가스 센싱 박막의 두께 의존 특성 연구)

  • Hwang, Hyun Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.3
    • /
    • pp.215-218
    • /
    • 2011
  • A novel design of gas sensor using Ga-doped ZnO (GZO) thin films which are deposited on low temperature co-fired ceramic (LTCC) substrates is presented. The LTCC substrates with thickness of 400 ${\mu}m$ are fabricated by laminating 12 green tapes which consist of alumina and glass particle in an organic binder. The GZO thin films with different thickness are deposited on LTCC substrates, by RF magnetron sputtering method. The microstructure and sensing properties of GZO gas sensing films are analyzed as a function of the film thickness. The films are well crystallized in the hexagonal (wurzite) structure with increasing thickness. The maximum sensitivity of 3.49 is obtained at 100 nm film thickness and the fastest 90% response time of 27.2 sec is obtained at 50 nm film thickness for the operating temperature of $400^{\circ}C$ to the $NO_2$ gas.

Freeze Cast Porous Mullite Ceramics and Recycling of Coal Fly Ash (동결주조 다공질 뮬라이트 세라믹스의 제조와 석탄회의 재활용)

  • Kim, Kyu Heon;Yoon, Seog Young;Park, Hong Chae
    • Korean Journal of Materials Research
    • /
    • v.26 no.2
    • /
    • pp.61-66
    • /
    • 2016
  • In order to fabricate porous mullite ceramics with controlled pore structure and improved mechanical strength, a freeze casting route has been processed using camphene mixed with tertiary-butyl alcohol (TBA) and coal fly ash/alumina as the solvent and the ceramic material, respectively. After sintering, the solidification characteristics of camphene and TBA solvent were evident in the pore morphology, i.e., dendritic and straight pore channels formed along the solidification directions of camphene and TBA ice, respectively, after sublimation. Also, the presence of microcracks was observed in the bodies sintered at $1500^{\circ}C$, mainly due to the difference in solidification volume change between camphene and TBA. The compressive strength of the sintered bodies was found generally to be dependent, in an inverse manner, on the porosity, which was mainly determined by the processing conditions. After sintering at $1300{\sim}1500^{\circ}C$ with 30~50 wt% solid loading, the resulting mullite ceramics showed porosity and compressive strength values in ranges of 83.8~43.1% and 3.7~206.8 MPa, respectively.

Metal Vapor Laser Research II. (금속증기레이저 연구 II)

  • 이재경;정환재;임기건;이형종;정창섭;김진승
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.178-182
    • /
    • 1992
  • An air-cooled discharge-heated copper-vapor laser system with its inter-electrode distance of 45 cm has been developed by utilizing an alumina ceramic plasma tube of 1.6 cm in diameter and 50 cm in lengih. For operating the laser, a dc high voltage power supply with output rating of 6 kV and 500 mA, a resonant charging circuitry consisting partly of an 1.8 H inductor assembly and a 5 nF storage capacitor, and a thyratron driver operating up to 7 kHz have also been developed. The present laser system starts lasing at the tube temperature of about $1350^{\circ}C$ and an maximum average output power of 0.7 W has been obtained at 12 kV, 4.5 kHz. 50 mbar of Ne buffer gas pressure, and at the tube temperature of $1460^{\circ}C$.

  • PDF

Characteristics of Redmud Ceramics by Sintering Temperature and Raw Materials of Clay Bricks (점토벽돌 제조 원료 종류에 따른 소성온도별 레드머드 세라믹의 특성)

  • Kang, Suk-Pyo;Kang, Hye-Ju
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.199-206
    • /
    • 2019
  • This study aims to recycle redmud which is a byproduct in the alumina industry. Redmud ceramics were prepared according to the type of raw materials by blending redmud with the raw materials used in the conventional clay bricks. In this paper, the compressive strength, water absorption ratio, and shrinkage of redmud ceramics prepared by mixing clay bricks were evaluated. Compressive strength and absorption ratio of redmud ceramics were compared with the clay brick criteria of KS L 4201. At the firing temperature of $1200^{\circ}C$, the specimens containing redmud only and the redmud with sandy loam and black clay were found to satisfy the 1st class of clay brick. The quality standard of compressive strength and absorption ratio was obtained by firing redmud with black clay and sandy loam at $1200^{\circ}C$. Also, when the redmud was mixed with black clay and feldspar, the 2nd class was satisfied when the sample was fired at $1100^{\circ}C$.

Fabrication and Electrical Properties of Ni-Mn-Co-Fe Oxide Thick Film NTC Thermistors (Ni-Mn-Co-Fe 산화물 후막 NTC 서미스터의 제조 및 전기적 특성)

  • Park, Kyeong-Soon;Bang, Dae-Young;Yun, Sung-Jin;Choi, Byung-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.912-918
    • /
    • 2002
  • Ni-Mn-Co-Fe oxide thick films were coated on an alumina substrate by screening printing technique. The microstructure and electrical properties of the thick films, as a function of composition and sintering temperature, were investigated. The components of the NTC thick films sintered at 1150${\circ}C$ were distributed homogeneously. On the other hand, in the case of the NTC thick films sintered at 1200 and 1250${\circ}C$, Co element was distributed homogeneously, but Ni, Mn and Fe elements were distributed heterogeneously, resulting in the formation of Ni rich and Mn-Fe rich regions. All the thick film NTC thermistors prepared showed a linear relationship between log resistance (log R) and the reciprocal of absolute temperature (1/T), indicative of NTC characteristics. At a given NiO and $Mn_3O_4$ content, the resistance, B constant and activation energy of $(Ni_{1.0}Mn_{1.0}Co_{1-x}Fe_x)O_4$ (0.25${\le}$x${\le}$0.75) and $(Ni_{0.75}Mn_{1.25}Co_{1-x}Fe_x)O_4$ (0.25${\le}$x${\le}$0.75) thermistors increased with increasing $Fe_2O_3$ content.

THE INFLUENCE OF SURFACE TREATMENTS ON THE SHEAR BOND STRENGTH OF RESIN CEMENTS TO IN-CERAM CORE (In-Ceram 코아의 표면처리 방법에 따른 레진시멘트와의 전단결합강도에 관한 연구)

  • Yoon, Jeong-Tae;Lee, Sun-Hyung;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.2
    • /
    • pp.129-146
    • /
    • 2000
  • An increasing demand for esthetic restorations has led to the development of new ceramic systems. In-Ceram, a glass-infiltrated alumina ceramic has three to few times greater flexural strength than other ceramic glass material. Because of its high strength, In-Ceram has been suggested as inlay, crown, laminate veneer and core material for resin bonded fixed partial dentures. This clinical application requires a stable resin bond to In-Ceram core. The purpose of this study was to evaluate the shear bond strength between In-Ceram core and resin cements according to various surface treatments and storage conditions. The surface of each In-Ceram core sample was subjected to one of the following treatments and then bonded to Panavia 21 or Variolink II resin cement. ; (1) sandblasting with $110{\mu}m$ aluminum oxide powder, (2) sandblasting and silanization, (3) sandblasting and Siloc treatment, (4) sandblasting and Targis link application. Each of eight bonding groups was tested in shear bond strengths after the following storage times and thermocycling. ; A) 24 hours storage in distilled water at $37^{\circ}C$, B) 5 weeks storage in distilled water at $37^{\circ}C$ C) 5 weeks storage in distilled water at $37^{\circ}C$ and thermocycled 2,000 thormocycling for every 10 days(totally 10,000 thermocycting) in $5^{\circ}C-55^{\circ}C$ bath. The bond failure modes were observed with scanning electron microscope(SEM). The results were as fellows : 1 The shear bond strengths of sandblasting group were significantly lesser than the other groups after 24 hours water storage. No significant difference of bonding strengths was found between storage time conditions(24 hours and 5 weeks). The shear bond strengths showed a tendency to decrease in Variolink II bonding groups and to increase in Panavia 21 bonding groups. 3. After thermocycling, the shear bond strengths of all groups were significantly decreased(p<0.01) and Targis link group exhibited significantly greater strengths than the other groups(p<0.05). 4. Panavia 21 bonding groups exhibited significantly greater bonding strengths in sandblasting group(p<0.01) and silane group(p<0.05) than Variolink II bonding groups. 5. In observation of bond failure modes, Targis link group showed cohesive failure in resin part and silane group and Siloc group showed complex failure and sandblasting group showed adhesive failure between In-Ceram and resin.

  • PDF

Plasma resistance of Bi-Al-Si-O and Bi-Al-Si-O-F glass coating film (Bi-Al-Si-O와 Bi-Al-Si-O-F 유리 코팅막의 플라즈마 저항성)

  • Sung Hyun Woo;Jihun Jung;Jung Heon Lee;Hyeong-Jun Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.4
    • /
    • pp.131-138
    • /
    • 2024
  • In this study, the microstructure and plasma resistance characteristics of 35Bi2O3-15Al2O3-50SiO2 (BiAl SiO) and 35Bi2O3-7.5Al2O3-50SiO2-7.5AlF3 (BiAlSiOF) glass layers coated on sintered alumina substrates were investigated according to the sintering conditions. The coated layers were formed using the bar coating method and then sintered at a temperature in the range of 700~900℃, which corresponds to the temperature before and after the hemisphere forming temperature, after a debinding process. The plasma resistance of the two coated glasses was approximately 2~3 times higher than that of the quartz glass, and in particular, the BiAlSiOF glass film with F added showed higher plasma resistance than BiAlSiO. It is thought to be due to the effect of suppressing the reaction with fluorine gas by adding fluorine to the glass. When the sintering time was increased at 700℃ and 800℃, the plasma resistance of both glasses improved, but when the sintering temperature was increased to 900℃, the plasma resistance decreased again (i.e., the etching rate increased). This phenomenon is thought to be related to the crystallization behavior of both glasses. The change in plasma resistance depending on the sintering conditions is thought to be related to the appearance of Al and Bi-rich phases.

Development of Ceramic Media for Yeast Immobilization (효모 고정화용 세라믹 담체의 개발)

  • 이율락;박상재
    • KSBB Journal
    • /
    • v.15 no.3
    • /
    • pp.285-292
    • /
    • 2000
  • Support media for yeast immobilization was prepared from a porous volcanic rock used as a moisturizer in orchid growing. The rock was broken to the size of 2-3 mm and burned at $600^{\circ}C$ in a furnace in order to remove organic materials blocking the pores or treated with HCI solution or NaOH solution to remove the inorganic dirts by dissolving. Even through both the acid and the akali solution were effective the latter was not recommendable because it broke the pore structure by dissolving the elements of the media. This media was mainly consisted of SiO2 with $Al_2O_3$ as a minor component and CaO and K2O as trace elements. It had the finely developed pores of $15-80\mu\textrm{m}$size. Yeast immobilization capacity of this media was about $5{\times108}$ cells/ml bed which is large enough to be used for the practical applications. Yeast immobilization capacities of Alumina and Cordierite were much smaller than that of silica-based media. Scanning electron micrograph of Cordierite and Alumina showed uneven surfaces and small size of pores in contrast to relatively smooth surface and large pores of silica based media which means that smooth surface and large pores are desirable for the good adsorption of microbes on the media.

  • PDF

Hybrid Water Treatment of Tubular Alumina MF and Polypropylene Beads Coated with Photocatalyst: Effect of Nitrogen Back-flushing Period and Time (관형 알루미나 정밀여과와 광촉매 코팅 폴리프로필렌 구의 혼성 수처리: 질소 역세척 주기와 시간의 영향)

  • Park, Jin Yong;Choi, Min Jee;Ma, Jun Gyu
    • Membrane Journal
    • /
    • v.23 no.3
    • /
    • pp.226-236
    • /
    • 2013
  • The effect of $N_2$ back-flushing period (FT) and time (BT) was compared with the previous result used PES (polyethersulfone) beads loaded with titanium dioxide photocatalyst in hybrid process of alumina microfiltration and PP (polypropylene) beads coated with photocatalyst in viewpoints of membrane fouling resistance ($R_f$), permeate flux (J), and total permeate volume ($V_T$). The reason of nitrogen back-washing instead of the general air back-washing method is to minimize the possible effect of oxygen included in air on water quality analysis. As decreasing FT, $R_f$ decreased and J and $V_T$ increased. Treatment efficiency of dissolved organic matters (DOM) was 82.0%, which was the higher than 78.0% of the PES beads result. This means that PP beads coated with photocatalyst was the more effective than PES beads loaded with photo-catalyst in the DOM removal. As increasing BT, the final $R_f$ decreased and the final J increased, but $V_T$ was the maximum at BT 15 sec. The average treatment efficiency of turbidity did not have any trend as changing BT. As BT increasing from 6 sec to 30 sec, the treatment efficiency of DOM increased 11.8%, which was a little higher than the result of PES beads.