• Title/Summary/Keyword: alumina cement

Search Result 84, Processing Time 0.023 seconds

BONDING BETWEEN RESIN AND CERAMICS (레진과 치과용 도재의 접착)

  • Kim, Sun-Jai;Lee, Keun-Woo;Han, Chong-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.2
    • /
    • pp.159-168
    • /
    • 2007
  • Statement of problem: Literature showed different results on the durability of bonded ceramic restoration. Purpose: The purpose of this article is to review the effect of surface treatment of ceramics in resin-ceramic bond to get predictable results. Material and method: PubMed data base was utilized to search the articles which were written in English and published in 1986 and 2006. Some electronic published articles which are forthcoming to publish in paper were also included for this review. This review article focused on the effect of acid etching and silane application on the silica based ceramics. The durability of resin-ceramic bonding, the methodology for bond strength test and resin bonding to alumina or zirconia based ceramics were compared in brief at the end of the review. Results and Conclusion: the effect of silane application can be influenced by the contaminations of saliva or solutions. Micromechanical retention by acid etching as well as silane application plays an important role in initial and durable bond strength between resin and ceramic. The use of phosphate modified resin cement following tribochemical silica coating and silane application produced best bond strength for alumina or zirconia based ceramics.

Nitrate Removal and Recycling Technique (질산 제거 및 재이용 기술)

  • Lee, Kyoung Hee;Sim, Sang Jun;Choi, Guang Jin;Kim, Young Dae;Woo, Kyoung ja;Cho, Young Sang;Choi, Eui-So
    • Clean Technology
    • /
    • v.3 no.2
    • /
    • pp.87-93
    • /
    • 1997
  • A new process has been developed for nitrate and other salts removals from polluted waters. Alumina cement and calcium oxide served as precipitating agents to remove nitrate with stirring at basic pH. Low content of alumina in the commercialized alumina cements resulted in a increasing in nitrate removal yield. It is found that the compositions of aluminium and calcium are the most important factors in successful nitrate insolubilization. In order to remove high concentration of nitrate in polluted water, multi-stage precipitation was found to be very effective. Sulfate, chloride, and phosphate ions as well as nitrate were also removed by the precipitated reaction. After precipitation, post-treatments including Na2CO3 addition and neutralization with acid alleviated the level of aluminium and calcium in the treated water.

  • PDF

The Optimum Binder Ratio for High-Strength Self-Leveling Material (고강도 Self-Leveling재의 최적 결합재비)

  • 김진만
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.67-76
    • /
    • 2002
  • Self-leveling material(SLM) is one of the floor finishing materials which make flat surface like as water level by itself in a short time. So it is possible to increase construction speed and enhance economical efficiency. In this study, author intended to develop SLM for the industrial warehouse and factory loading heavy weight machinery and vehicles. The demanded properties for this type of SLM are above 20mm of flow value and above 300kgf/cm2 of 28-days compressive strength. To possess demended strength and fluidity, SLM have to be composed of many types of binders and chemical additives. So it is difficult to decide suitable mixing proportion of composition materials. In this study, author investigated the weight percentage effect of main composition materials for high-strength self-leveling material, by experimental design such as tables of orthogonal arrays and simplex design, and by statistical analysis such as analysis of variance and analysis of response surface. Variables of experiments were ordinary portland cement(OPC), alumina cement(AC), anhydrous gypsum(AG), lime stone(LS) and sand, and properties of tests were fluidity of fresh state and strength of hardened state. Results of this study are showed that suitable mix proportions of binders for the high strength self-leveling materials are two groups. One is 78~85.5% OPC, 7.5~9.5% AC, 9~12.5% AG and the other is 72.5~78% OPC, 9~12.5% AC, 13~l5% AG.

  • PDF

Pore and Efflorescence Characteristics of Alkali Activated Slag-Red Mud Cement Mortar depending on Red Mud Content (레드머드 대체율에 따른 알칼리활성화 슬래그-레드머드 시멘트 모르타르의 기공 및 백화특성)

  • Kang, Suk-Pyo;Kang, Hye-Ju
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.3
    • /
    • pp.261-268
    • /
    • 2017
  • Red mud is an inorganic by-product obtained from the mineral processing of alumina from Bauxite ores. A highly alkali inorganic waste product with a pH level over 11, red mud in its original state negatively impacts the ecosystem, so appropriate treatment is necessary. The development of alkali activated slag-red mud cement can be a representative study aimed at recycling the strong alkali of the red mud as a construction material. However, Alkali-activated binders that use sodium activators have been reported to be more vulnerable to efflorescence. Therefore, in this study, the compressive strength, pore characteristics, water absorption, elution characteristics, and efflorescence properties of alkali-activated slag cement mortar were assessed according to their red mud substitution ratio.

Porosity of Alkali-Activated Slag-Red Mud Soil Mixed Pavement of Red Mud Substitution Rate (알칼리활성화 슬래그-레드머드 흙포장재의 레드머드 대체율에 따른 기공특성)

  • Kang, Hye Ju;Kim, Byeong gi;Kim, Jae Hwan;Kang, Suk Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.91-92
    • /
    • 2016
  • Red mud is an inorganic by-product produced from the mineral processing of alumina from Bauxite ores. the development of alkali-activated slag-red mud cement can be a representative study aimed at recycling the strong alkali of the red mud as a construction material. This study is to investigate the pore characteristics of alkali-activated slag-red mud soil pavement according to the red mud content. The results showed that the porosity of alkali-activated slag-red mud soil pavement increased but the compressive strength of that decreased as the red mud content increased.

  • PDF

A Study on The Corrosion Appearance of Mortar by The Sulfuric-Acid for Some Kinds of Cements (각종 시멘트의 황산에 의한 모르타르의 침식현상에 관한 연구)

  • 이웅종;정연식;김동석;양승규;유재상;이종열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.281-286
    • /
    • 2003
  • This study presents the results of investigations with the object to determine the resistance to sulfuric acid for some kinds of cements containing 0%-70% of slag powder. The specimen is immersed 5% H$_2$SO$_4$ solution after the 28th days, is measured chemical analysis, XRD, SEM and etc after the immersed 35th days and is measured the erosion depth after the immersed 168th days. The results of experiment are founded out that alumina cement containing slag power was excellent at a point of view for the sulfuric acid resistance and the erosion depth was suitable to the evaluated method of the sulfuric acid resistance in the stead of the evaluated method of weight loss.

  • PDF

Economic Analysis with Development of Rapid Setting Alumina-based Binder for Road Repair (알루미나계열 속경성 도로 보수재료 개발에 따른 경제성 분석)

  • Yang, Hee-Jun;Yang, Min-Jae;Hong, Sung-In;Ann, Ki-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.3-10
    • /
    • 2017
  • In case of Korea highways, about 60% of highways are paved by concrete and more than 50% of them were repaired due to reduction in required performance such as damage in pave or joint and delamination of cover pavement. However, repairing old material in such structure generally costs a lot of money and induces difficulty in maintenance. Thus, enhanced material for ensuring economic efficiency should be developed. The present study designed concrete mixtures with 3 levels of replacement using OPC (0, 10, 20%) in calcium aluminate cement and to evaluate material performance for load pavement, experimental works for setting time, compressive strength and flexural strength were carried out on those materials. As a result, 20% replacement for OPC was determined as an optimized material in terms of required physical performance and its unit price. Moreover, to determine cost in load pavement economy analysis using a program (CA4PRS) was conducted with widely used paving materials. Result showed that application for 20% replacement for OPC was the most efficient in economical aspect, arising from 4.052 and 1.577 billion won for total construction and user cost, respectively.

Influence of Material Factors on Estimation of Compressive Strength of Concrete by P Type Schmidt Rammer (P형 슈미트해머에 의한 콘크리트의 압축강도 추정에 미치는 재료요인의 영향)

  • Han Cheon-Goo;Lee Yong-Sung;Han Mn-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.459-465
    • /
    • 2004
  • The present paper is intended to investigate the influence of materials such as cement, mineral admixture and aggregate, on the estimation of compressive strength by P type schmidt hammer. According to the results, the materials of concrete, such as the types of cement, the replacing ratio of mineral admixture, the kinds and maximum size of aggregate, hardly influence on non-destructive test by P type schmidt hammer except for alumina cement, hence, P type schmidt can be applicable to most of the concrete with a wide range. Since the correlativity between the rebound value of P type schmidt hammer and compressive strength is very favorable(above coefficient of correlation 0.96) regardless of materials, it is considered that compressive strength can be estimated comparatively exactly by P type schmidt hammer. The estimating formula of compressive strength by rebound value are derived from this experiment as following. $\cdot$Horizontal strike : Fc = 0.765RH - 5.74 (R=0.965) $\cdot$ Vertical strike Fc = 0.793RV - 8.66 (R=0.959)

The Effects of Insoluble Polymers on Water Stability of Carbon Fiber Reinforced Polymer-MDF Cementitious Composites (불용성 폴리머가 탄소섬유 보강 Polymer-MDF 시멘트 복합재료의 기계적 특성에 미치는 영향)

  • 김태진;박춘근
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.84-90
    • /
    • 1999
  • High alumina cement(HAC) and polyvinyl alcohol(PVA) based macro-defect-free(MDF) cement composites were reinforced using short carbon fibers, 3mm in length, 1-4% in weight fraction and insoluble polymers such as polyurethane, epoxy, phenol resin, in order to increase mechanical properties and water stability. The specimens were manufactured by the low heat-press(warmpress) method. In addition, the interface and the cross-linking reaction of cement and polymers was also studied by the SEM and TEM. Flexural strength of HAC/PVA based MDF cementitious composites was proportionally decreased with increasing fiber contents due to the undensified structure around fibers. The flexural strength of insoluble polymer added specimen was decreased with increasing fiber contents, while water stability was dramatically improved. Epoxy resin added specimen showed the highest strength with increasing fiber contents, compared with other specimens. The water stability of fiber content 4% added specimen immersed in water presented about 95%, 87% at 3 and 7 days immersed in water, respectively. The interfacial adhesive strength of fiber-matrix was very much improved due to cross linking reaction of polymer and metal ions of cement. Tensile strength of insoluble polymers added composites as linearly increased with increasing the fiber contents. The epoxy resin added specimen also showed highest tensile strength. The 4% fiber added specimen presented 30~80% higher strength than controlled specimen.

  • PDF

Evaluation of shear bond strength between dual cure resin cement and zirconia ceramic after thermocycling treatment

  • Lee, Jung-Jin;Kang, Cheol-Kyun;Oh, Ju-Won;Seo, Jae-Min;Park, Ju-Mi
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • PURPOSE. This study was performed to evaluate shear bond strength (SBS) between three dual-cured resin cements and silica coated zirconia, before and after thermocycling treatment. MATERIALS AND METHODS. Sixty specimens were cut in $15{\times}2.75mm$ discs using zirconia. After air blasting of $50{\mu}m$ alumina, samples were prepared by tribochemical silica coating with $Rocatec^{TM}$ plus. The specimens were divided into three groups according to the dual-cure resin cement used: (1) Calibra silane+$Calibra^{(R)}$, (2) Monobond S+$Multilink^{(R)}$ N and (3) ESPN sil+$RelyX^{TM}$ Unicem Clicker. After the resin cement was bonded to the zirconia using a Teflon mold, photopolymerization was carried out. Only 10 specimens in each group were thermocycled 6,000 times. Depending on thermocycling treatment, each group was divided into two subgroups (n=10) and SBS was measured by applying force at the speed of 1 mm/min using a universal testing machine. To find out the differences in SBS according to the types of cements and thermocycling using the SPSS, two-way ANOVA was conducted and post-hoc analysis was performed by Turkey's test. RESULTS. In non-thermal aged groups, SBS of Multilink group (M1) was higher than that of Calibra (C1) and Unicem (U1) group (P<.05). Moreover, even after thermocycling treatment, SBS of Multilink group (M2) was higher than the other groups (C2 and U2). All three cements showed lower SBS after the thermocycling than before the treatments. But Multilink and Unicem had a significant difference (P<.05). CONCLUSION. In this experiment, Multilink showed the highest SBS before and after thermocycling. Also, bond strengths of all three cements decreased after thermocycling.