• 제목/요약/키워드: alum dosage

검색결과 43건 처리시간 0.033초

진양호소수의 효과적인 정수처리를 위한 최적응집제 주입량 결정 -콜로이드성 오염물질 처리를 위한 응집제 주입효과- (Determination of Optimun Coagulant Dosage for Effective Water Treatment of Chinyang Lake -The Effect of Coagulant Dosing on Remoaval of Colloidal Pollutants-)

  • 이원규;조주식;이홍재;허종수
    • 한국환경과학회지
    • /
    • 제7권6호
    • /
    • pp.761-772
    • /
    • 1998
  • 상수원수의 효과적인 처리를 위한 최적 응집제 주입량을 결정하기 위하여 상수원수의 콜로이드성 오염물질 처리를 위한 Alum, PAC 및 PACS의 응집제 주입량별 탁도제거 및 원수특성변화를 조사한 결과는 다음과 같다. 최저 잔류탁도를 나타내는 최적 응집제 주입량은 원수의 탁도가 5NTU인 경우 Alum은 35mg/ι, PAC은 30mg/ι 및 PACS는 10mg/ι이었고, 원수의 탁도가 10NTU인 경우 Alum은 30mg/ι, PAC은 25mg/ι 및 PACS는 10mg/ι이었으며, 이때 침전시간 4분 및 8분대의 탁도제거율은 원수탁도 5NTU인 경우 Alum은 10 및 72%, PAC은 44 및 62%, PACS는 25 및 55%였고, 원수탁도 10NTU인 경우에는 Alum은 52 및 70%, PAC는 90 및 95%, PACS은 10 및 28%였다. PAC이 Alum 및 PACS에 비하여 floc형성속도와 침강성이 우수하고 탁도제거율도 높게 나타나 침전지내급수량 변동이 심하고 표면부하율이 과부하일 경우 PAC을 사용하는 것이 유리할 것으로 판단되었다. 원수의 탁도별 응집제 주입량에 따른 pH 및 알칼리도는 응집제 주입량이 증가할수록 감소되었으나 각 응집제 최대 주입량에서 pH는 음용수 수질기준인 pH 5.8이하로는 감소되지 않았으며, 알칼리도도 재탁현상이 일어날 수 있는 10mg/ι 이하로는 감소되지 않았다. 처리수준 잔류 Al은 원수탁도 5 및 10NTU인 경우 Alum과 PAC은 그 주입량이 저농도에서 고농도로 갈수록 잔류탁도가 감소함으로써 잔류 Al도 감소하였으나 PACS는 잔류탁도가 증가하는 주입량에서도 잔류 Al은 감소하였다. 수중 KMnO$_4$ 소비량은 응집제 주입량이 증가할수록 감소되었으며, 최저 잔류 탁도를 나타내는 최적 응집제 주입량에서의 KMnO$_4$ 소비량 감소율은 원수탁도 5NTU일 경우 PAC 39%, Alum 18% 및 PACS 11%였으며, 10NTU일 경우에는 PAC 42%, Alum 27% 및 PACS 36%로서 전반적으로 탁도제거율과 KMnO$_4$소비량간에는 일정한 경향이 없는 것으로 나타났다. 수중 TOC는 응집제 주입량이 증가함에 따라 약간씩 감소되었으나 응집제 주입량 30mg/ι 이후부터는 일정 수준으로 유지되었으며, 감소되는 정도는 PACS >PAC >Alum순이었다. 최저 잔류탁도를 나타내는 최적 응집제 주입량에서의 Zeta potential은 원수탁도가 5NTU일 경우 Alum, PAC 및 PACS 모두 -20mV∼-15mV사이였으며, 원수 탁도가 10NTU인 경우에는 0∼0.5mV 범위에 있는 것으로 나타나 응집제 종류 및 주입량이 상이하더라도 응집효율이 가장 양호한 상태에서의 Zeta potential은 일정한 범위내에 있는 것으로 나타났다.

  • PDF

생물학적 처리공정 내 Alum 주입에 따른 인 처리 효율과 미생물 활성도 변화에 관한 연구 (Study on Change of Microbial Activity and Removal Efficiency of Phosphorus with Alum Injection in the Biological Process)

  • 최정수;주현종
    • 한국물환경학회지
    • /
    • 제27권2호
    • /
    • pp.188-193
    • /
    • 2011
  • The effects of coagulants on the microorganisms when they are injected directly into the biological treatment facility for T-P removal have been easily observed from the results of past experiments. As such this study is set out to derive the effective plans for the coagulant dosage by analyzing the effects of the injected coagulant on the microbial activity during the chemical treatment for T-P removal. The research methods entailed the assessment of removal efficiency of T-P according to the coagulant dosage while changing the molar ration between Alum and influent phosphorus. At the same time Specific Oxygen Uptake Rate (SOUR) according to the coagulant dosage was measured. SOUR was used as a method for indirect assessment of the microbial activity according to the coagulant dosage. The results from the study showed that with the increase in the alum dosage, the removal efficiency T-P tended to increase. On the other hand, the increase in coagulant dosage resulted in the decrease in SOUR, which indicates the decrease in the microbial activity. Such reduction in the activity could be explained by the increase in the concentration of removal efficiency of $TBOD_5$. Based on experiment results from the study, it is determined that coagulant dosage affects the microbial activity. Moreover, the indirect assessment on the microbial activity using SOUR is considered possible.

진양호소수의 효과적인 정수처리를 위한 최적응집제 주입량 결정 -조류제거를 위한 응집제 주입효과- (Determination of Optimum Coagulant Dosage for Effective Water Treatement of Chyinyang Lake - The Effect of Coagulant Dosing on Removal of Algae-)

  • 이원규;조주식;이홍재;임영성;허종수
    • 한국환경과학회지
    • /
    • 제8권5호
    • /
    • pp.625-631
    • /
    • 1999
  • This study was performed to determine the optimum coagulant dosing for effective treatment of raw water in Chinyang lake. Removal rates of algae and characteristics of the water according to coagulants dosage were investigated by treatment with Microcystis aeruginosa, which is a kind of blue-green algae, to the raw water below 5NTU. The coagulants dosage for maximum removal rate of algae were 30 mg/$\ell$ of Alum, 30 mg/$\ell$ of PAC and 10 mg/$\ell$ of PACS, respectively. The removal rate of algae in 30 mg/$\ell$ of PAC was highest as 85% compared with the other treatments. At the point of maximum removal rate of algae, the removal rates of turbidity were 34%, 66% and 22% in Alum, PAC and PACS, respectively. Residual Al was decreased depend upon decreasing turtidity in water by treatment of Alum or PAC, but decreased depend upon increasing turbidity in water by treatment of PACS. The removal rate of ${Mn}_{2+}$ in water was high in the order of Alum, PAC and PACS treatment. And ${Fe}_{2+}$ in water was not changed by treatemnt of these coagulants. Particle numbers distributions according to the particle size of suspended solids that were not precipitated at 8 min. of settling time after treatment of coagulants dosage for the maximum removal rate of algae were investigated. Most of the particle sizes were below 30 $\mu$m and particle numbers distributions below 10 $\mu$m were 64%, 56% and 66% by treatment of Alum, PAC and PACS, respectively. Zeta potential was in the range of -6.1~-9.7 mV at optimum coagulants dosage for algae removal.

  • PDF

정수처리시 잔류알루미늄 농도를 최소화하기 위한 영향인자 고찰 (A Study on the Factors to Minimize the Residual Aluminum in Filtered Water)

  • 고영송;우달식;남상호
    • 한국환경보건학회지
    • /
    • 제19권2호
    • /
    • pp.1-9
    • /
    • 1993
  • In public water supply systems, Alum and/or PAC being used as a coagulant. It is well known that their use increased frequently the concentration of residual aluminum in filtered water upon operating conditions. This study was conducted to find the optimum conditions that both the concentration of residual aluminum and turbidity are minimized by changing such factors as pH, temperature, alum dosage, mixing rate, alkalinity and hardness. The results can be summarized as follows: The pH values for the minimum concentration of residual aluminum and turbidity as a given experimental condition were found at pH 6 and pH 7 respectively, the apparent clarity was best at pH 8. The floc settling rate was the greatest at pH 6.5, but the turbidity was high at the same condition. The more alum dosage, the higher the concentration of residual aluminum. However the alum dosage less than 15 mg/l tend to decrease in turbidity. Restabilization and enmeshment occurred near 15 mg/l and 20 mg/l of alum dose respectively. With the increase of mixing rate (rapid and slow), the concentration of residual aluminum and turbidity are increased and the same trend was found in increment of mixing time. At low water temperature, the concentration of residual aluminum was decreased, but turbidity was increased. It was confirmed that alkalinity had an effect on the coagulation efficiency, but hardness did not.

  • PDF

급속혼화공정에서 응집제 주입률에 따른 미세입자의 성장특성 (Characteristics of Micro Floc in a Rapid Mixing Step at Different Coagulant Dose)

  • 전항배;박상민;박노백;정경수
    • 상하수도학회지
    • /
    • 제21권2호
    • /
    • pp.243-252
    • /
    • 2007
  • Effects of alum dosage on the particle growth were investigated by monitoring particle counts in a rapid mixing process. Kaolin was used for turbid water sample and several other chemicals were added to adjust pH and ionic strength. The range of velocity gradient and mixing time applied for rapid mixing were $200{\sim}300sec^{-1}$ and 30~180 sec, respectively. Particle distribution in the synthetic water sample was close to the natural water where their turbidity was same. The number of particles in the range of $10.0{\sim}12.0{\mu}m$ increased rapidly with rapid mixing time at alum dose of 20mg/L, however, the number of $8.0{\sim}9.0{\mu}m$ particles increased at alum dose of 50mg/L. The number of $14.0{\sim}25.0{\mu}m$ particles at alum dose of 20mg/L was 10 times higher than them at alum dose of 50mg/L. Dominant particle growth was monitored at the lower alum dose than the optimum dose from a jar test at an extended rapid mixing time(about 120 sec). The number of $8.0{\sim}14.0{\mu}m$ particles was lower both at a higher alum doses and higher G values. At G value of $200sec^{-1}$ and at alum dose of 10-20mg/L, residual turbidity was lower as the mixing time increased. But at alum dose above 40mg/L and at same G value, lower residual turbidity occurred in a short rapid mixing time. Low residual turbidity at G value of $300sec^{-1}$ occurred both at lower alum doses and at shorter mixing time comparing to the results at G value of $200sec^{-1}$.

정수공정 개선을 위한 유기성 Polymer의 사용 (Utilization of Organic Polymers for Improvement of Drinking Water Treatment Process)

  • 이화자;김정숙;강임석
    • 한국환경과학회지
    • /
    • 제7권2호
    • /
    • pp.217-222
    • /
    • 1998
  • Organics matters including algae are the major contaminants of Nak-dong river and it's concentration Is more Increasing now. The use of coagulants has been Incresed for the effective treatment of drinking water, and aluminum coagulants have been the most widely used in raw water treatment. However, when inorganic metal coagulant is excessively used for long period, it would result in secondary problems, such as increasing sludge production, enhancing the cost of water treatment process, and increasing concentration of residual metal, especially aluminum. Therefore, recently. in order to reduce the use of metal coagulant and enhance the coagulation effectiveness, several alternative coagulants, such as polymeric Inorganic coagulants and organic polymers, have been used In water treatment plants. The objectives of thins research were (11 to determine optimum dosage concentration and compare the coajuiation efnciency at various pH ranees with alum alone, alum+cationic polymer, and alum+anlonlc polymer, (21 to evaluate the amount of alum reduced by using organic polymer, (31 to maximize removal officiency of organic matter and minimize the concentration of residual aluminum.

  • PDF

Alum과 PACl을 이용한 응집처리 (Chemical Coagulation Treatment Using Alum and PACl in Complex Wastewater)

  • 성일화
    • 한국환경보건학회지
    • /
    • 제35권1호
    • /
    • pp.53-57
    • /
    • 2009
  • In order to treat the complex wastewater containing organic compound and solids, pre-treatment system associated with molecular separation process were investigated. The reductions of COD and turbidity were obtained after coagulation processes using Alum (Aluminium sulfate, $Al_2(SO_4)_2{\cdot}18H_{2}O$) and PACl (poly aluminium chloride as 17% $Al_{2}O_{3}$). The results of study were as follows: using variable dosage of Alum, COD removal was highest at 4,000 mg/l, and the reduction of COD and turbidity was 42% and 92%, respectively. The optimum coagulation would be effective at pH 7.3 than pH 9.0 by the addition of alum at a concentration of 6,000 mg/l and PACl was add at 4.25% in raw complex wastewater with 2,000 mg/l alum at pH 7.3, the reduction of COD was reduced by 32%. But coagulation aid experiments indicated that PACl would be more effective in sludge separation ability than COD removal efficiency.

PACl 및 Alum 응집제 특성이 정밀여과막 투과수량 및 막오염에 미치는 영향 (Impact of Characteristics of Polymeric Al Coagulants PACl and Alum on Membrane Flux and Fouling of Microfiltration)

  • 진용철;최양훈;권지향
    • 상하수도학회지
    • /
    • 제25권2호
    • /
    • pp.231-240
    • /
    • 2011
  • The objectives of this research are to investigate coagulation efficiencies of two coagulants l.e., alum and polyaluminum chloride and to understand effects of the coagulants on membrane fouling in microfiltration. The turbidity of supernatant from alum coagulation was increased with increasing doses whereas the turbidity from PACl coagulation was maintained at the low values. The observed injection volume of PACl for the same removal was approximately 30 percent less than alum, which produced a low sludge volume. The settling velocity of PACl flocs was greater than alum flocs. The results corresponded well with floc size measurements. Flux decline from alum coagulation was significant due in part to small sizes of flocs. At the low dose, alum floc had less specific cake resistance than PACl floc. However, as the dosage was increased, the increases in specific cake resistances of alum was substantial. Alum coagulation pretreatment needs careful operation to reduce membrane fouling by flocs. In general, PACl coagulants were more effective than alum coagulants for pretreatment of membrane processes because PACl showed the better performance in coagulation and membrane fouling.

탁도와 총유기탄소 제거를 위한 최적응집제 및 투여량 선정 연구 (Optimal coagulant and its dosage for turbidity and total organic dissolved carbon removal)

  • 박한배;우달식
    • 한국산학기술학회논문지
    • /
    • 제16권3호
    • /
    • pp.2321-2327
    • /
    • 2015
  • 본 연구는 급격한 수질변화에 따른 현장 적용에 적합한 응집제를 선정하고, 응집제 별 최적 주입량을 찾기 위해 aluminium sulfate, poly aluminum chloride, poly aluminum silicate chloride를 이용하여 Jar-Test와 Pilot-Test의 검증으로 실험 하였다. 분석 항목은 탁도, TOC, pH로 제거율을 측정하였다. 실험 결과를 바탕으로 PASC의 경우 기존 응집제 인 Alum이나 PAC 보다 최적 주입량 (15 mg/L)이 상대적으로 적었으며, 제거율도 높게 나타남을 확인할 수 있었다. Jar-Test에서는 원수 탁도 3-20 NTU 범위에서 응집제(PASC)의 최적 주입량을 주입하였을 때, 탁도 제거율(80%)과 TOC 제거율(89%)이 가장 높았으며, Pilot-Test에서는 원수 탁도 3.6-27 NTU 범위에서 응집제 최적 주입량을 주입하였을 때 탁도 제거율(82%)과 TOC 제거율(88%)을 확인할 수 있었다. 따라서 본 연구 결과를 바탕으로 응집제의 제거 효과는 원수 탁도와 TOC가 높아질수록 상승하는 경향을 확인할 수 있었다.

Recovery of ultrafine particles from Chemical-Mechanical Polishing wastewater discharged by the semiconductor industry

  • Tu, Chia-Wei;Wen, Shaw-Bing;Dahtong Ray;Shen, Yun-Hwei
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.715-718
    • /
    • 2001
  • This study uses traditional alum coagulation and sedimentation process to treat CMP wastewater from cleaning after polishing. The primary goal is to successfully recycle both solid fines and water for semiconductor manufacturing. Results indicated that CMP wastewater may be successfully treated to recover clean water and fine particles by alum coagulation. The optimum operating conditions for coagulation are as fellowing: alum dosage of 10 ppm, pH at 5, rapid mixing speed at 800 rpm, 5 min rapid mixing time, and long slow mixing time. The treated water with low turbidity and an average residual aluminum ion concentration of 0.23 ppm may be considered for reuse. The settled sludge after alum coagulation contains mainly SiO$_2$particle with a minor content of aluminum (1.7 wt%) may be considered as raw materials for glass and ceramic industry.

  • PDF