• Title/Summary/Keyword: altitude control

Search Result 412, Processing Time 0.024 seconds

An Implementation of Formation Flight Control System Using Two Drones (두 대의 드론을 이용한 편대 비행 제어 시스템 구현)

  • Kim, Dong-Jin;Park, Young-Seak
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.6
    • /
    • pp.343-351
    • /
    • 2016
  • In this study, we implemented a formation flight control system using two drones. Ground control system communicates with drones by MAVLink protocol, does keep watch on drone's status and sends simultaneously formation flight instructions to drones in real time. Two drones have been able to fly by a formation flight algorithm without crashing while maintaining the same speed, and a constant distance and altitude.

브러시리스 직류모터 방식 EMDP의 구동을 위한 제어시스템 설계

  • Lee, Hee-Joong;Park, Moon-Su;Min, Byeong-Joo;Choi, Hyung-Don
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.162-170
    • /
    • 2005
  • In KSLV-I, actuation system for thrust vector control of kick motor was configured as electro-hydraulic servo actuation system and consisted of actuators, hydraulic power supply system, hydraulic power distribution system and control system. In case of hydraulic power supply system, we use EMDP(Electric Motor Driven Pump) to supply hydraulic power. Generally, we use brushed DC motor for EMDP but it is not easy to operate EMDP using brushed DC motor at a high altitude. Hence, we are developing EMDP using brushless DC motor to use at a high altitude. In this study, we will explain control system for BLDC motor to drive hydraulic pump.

  • PDF

Nonlinear Adaptive Velocity Controller Design for an Air-breathing Supersonic Engine

  • Park, Jung-Woo;Park, Ik-Soo;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.361-368
    • /
    • 2012
  • This paper presents an approach on the design of a nonlinear controller to track a reference velocity for an air-breathing supersonic vehicle. The nonlinear control scheme involves an adaptation of propulsive and aerodynamic characteristics in the equations of motion. In this paper, the coefficients of given thrust and drag functions are estimated and they are used to approximate the equations of motion under varying flight conditions. The form of the function of propulsive thrust is extracted from a thrust database which is given by preliminary engine input/output performance analysis. The aerodynamic drag is approximated as a function of angle of attack and fin deflection. The nonlinear controller, designed by using the approximated nonlinear control model equations, provides engine fuel supply command to follow the desired velocity varying with time. On the other hand, the stabilization of altitude, separated from the velocity control scheme, is done by a classical altitude hold autopilot design. Finally, several simulations are performed in order to demonstrate the relevance of the controller design regarding the vehicle.

A Preliminary Study of Low Temperature Condition by Heat Exchanger (열교환기를 이용한 저온 환경 구축에 대한 기초 연구)

  • Lee, Yang-Suk;Yang, Jae-Joon;Kim, Yoo;Ko, Young-Sung;Lim, Byeung-Jun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.23-26
    • /
    • 2007
  • A preliminary, study of low temperature condition was performed to simulate high altitude condition. The mixed air temperature were investigated at various condition by experiments using cryogenic air by heat exchanger and normal temperature air. An experimental setup was constructed to simulate low temperature condition with liquid nitrogen. To control mass flow rate, orifice and pressure regulators were used. The experimental results show that the mixed air temperature increases linearly with mass flow rate of normal temperature air. Therefore it can be help to simulate a low temperature condition of high altitude.

  • PDF

Experimental Vrification of the Sray Clculation using the Aricultural Done (농업용 방제드론의 방제면적 산출에 따른 실험적 검증)

  • Wooram Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.569-576
    • /
    • 2023
  • An agricultural drones are gradually increasing in utilization due to economic efficiency, and consist of a main frame in charge of flying spray system in charge of moving pesticide to control targets. Therefore, the environment and characteristics of crops should be considered when controlling pesticides using drones and conditions such as systematic flying altitude of flight, speed, and spray time should be changed accordingly. However, pest control work using agricultural drones has different spray effects depending on level the operation proficiency and spray impact. In addition, there are variations in operating standards and control efficiency for agricultural drones, which hinder the distribution of agricultural control drones in the field of pest control work. Therefore, this study attempts to identify the spraying characteristics of agricultural drones, apply the effective spraying time, interval and experimentally verify the system that can calculation of spray area compared to previous studies. Through this experimental verification, it is intended to apply the optimal control process by minimizing the obstacles to pest control work by applying the operation method and systematic figures to agricultural drones.

The Design and Implementation of the Collision Avoidance Warning Function in the Air Traffic Control System (항공관제 시스템에서 항공기 공중충돌 경고기능의 설계 및 구현)

  • Song, Jin-Oh;Sim, Dong-Sub;Kim, Ki-Hyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.213-221
    • /
    • 2009
  • An aircraft collision accident is a disaster that causes great losses of inventories and lives. Though a collision avoidance warning function is provided automatically to pilots in the aircrafts by the enhancement of the aircraft capability, achieving fast decision-making to escape a collision situation is a complex and dangerous work for pilots. If an in-flight collision situation is controlled by the air traffic control system which monitors all airplanes in the air, it would be more efficient to prevent in-flight collisions because it can handle the emergency before the pilot's action. In this paper, we develop the collision avoidance warning function in the air traffic control system. Specifically, we design and implement the five stages of the collision avoidance function, and propose a visualization method which could effectively provide the operators with the trajectories and altitudes of the aircrafts in a collision situation. By developing an in-flight collision warning function in the air traffic control system that visualizes flight patterns through the state transition data of in-flight aircrafts on the flight path lines, it can effectively prevent in-flight collisions with traffic alerts. The developed function allows operators to effectively select and control the aircraft in a collision situation by providing the operators with the expected collision time, the relative distance, and the relative altitude while assessing the level of alert, and visualizing the alert information which includes the Attention-Warning-Alert phase via embodying the TCAS standard. With the developed function the air traffic control system could sense an in-flight collision situation before the pilot's decision-making moment.

A Study on the Improvement of Pitch Autopilot Flight Control Law (세로축 자동조종 비행제어법칙 개선에 관한 연구)

  • Kim, Chong-Sup;Hwang, Byung-Moon;Lee, Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1104-1111
    • /
    • 2008
  • The supersonic advanced trainer based on digital flight-by-wire flight control system uses aircraft flight information such as altitude, calibrated airspeed and angle of attack to calculate flight control law, and this information is measured by IMFP(Integrated Multi-Function Probe) equipment. The information has triplex structure using three IMFP sensors. Final value of informations is selected by mid-value selection logic to have more flight data reliability. As the result of supersonic flight test, pitch oscillation is occurred due to IMFP noise when altitude hold autopilot mode is engaged. This tendency may affect stability and handling quality of an aircraft during autopilot mode. This paper addresses autopilot control law design to remove pitch oscillation and these control laws are verified by non-real time simulation and flight test. Also, pitch response characteristics of pitch attitude hold autopilot mode is improved by upgrading the control law structure and feedback gain tuning during bank turn.

Analysis on Frozen & Sun-synchronous Orbit Conditions at the Moon

  • Song, Young-Joo;Park, Sang-Young;Kim, Hae-Dong;Lee, Joo-Hee;Sim, Eun-Sup
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.24.4-24.4
    • /
    • 2011
  • Frozen orbit concept is very useful in designing particular mission orbits including the Sun-synchronous and minimum altitude variation orbits. In this work, variety of frozen and Sun-synchronous orbit conditions around the Moon is investigated and analyzed. The first two zonal harmonics of the Moon, J2 and J3, are considered to determine mean orbital elements to be a frozen orbit. To check the long-term behavior of a frozen orbit, formerly developed YonSei Precise Lunar Orbit Propagator (YSPLOP) is used. First, frozen orbit solutions without conditions to be the Sun-synchronous orbit is investigated. Various mean semi-major axes having between ranges from 1,788 km to 1,938 km with inclinations from 30 deg to 150 deg are considered. It is found that a polar orbit (90 deg of inclination) having 100 km of altitude requires the orbital eccentricity of about 0.01975 for a frozen orbit. Also, mean apolune and perilune altitudes for this case is about 136.301 km and 63.694 km, respectively. Second, frozen orbit solutions with additional condition to be the Sun-synchronous orbit is investigated. It is discovered that orbital inclinations are increased from 138.223 deg to 171.553 deg when mean altitude ranged from 50 km to 200 km. For the most usual mission altitude at the Moon (100 km), the Sun-synchronous orbit condition is satisfied with the eccentricity of 0.01124 and 145.235 deg of inclination. For this case, mean apolune and perilune altitudes are found to be about 120.677 km and 79.323 km, respectively. The results analyzed in this work could be useful to design a preliminary mapping orbit as well as to estimate basic on-board payloads' system requirements, for a future Korea's lunar orbiter mission. Other detailed perturbative effects should be considered in the further study, to analyze more accurate frozen orbit conditions at the Moon.

  • PDF

A Study on Utilization of Drone for Public Sector by Analysis of Drone Industry (국내외 드론산업 동향 분석을 통한 공공분야에서의 드론 활용방안에 대한 연구)

  • Sim, Seungbae;Kwon, Hunyeong;Jung, Hosang
    • Journal of Information Technology Services
    • /
    • v.15 no.4
    • /
    • pp.25-39
    • /
    • 2016
  • The drone is an unmanned aerial vehicle which has no human pilot. Drones can be classified into military drones, commercial drones, and personal drones by usage. Also, drones can be classified from large-sized to nano-sized drone by size and autonomous, remote controlled drone by control type. Especially, military drones can be classified into low-altitude drones, medium-altitude, and high-altitude drones by altitude. Recently, the drone industry is one of the fast growing industries in the world. As drone technologies have become more advanced and cost-effective, Korean government has set its goal to become a top-level country in drone business. However, the government's strict regulation for drone operations is one of the biggest hurdles for the development of the related technologies in Korea and other countries. For example, critical problems for drone delivery can be classified into technical issues and institutional issues. Technical issues include durability, conditional awareness, grasp and release mechanisms, collision avoidance systems, drone operating system. Institutional issues include pilot and operator licensing, privacy rules, noise guidelines, security rules, education for drone police. This study analyzes the trends of the drone industry from the viewpoint of technology and regulation. Also, we define the business areas of drone utilization. Especially, the drone business types or models for public sector are proposed. Drone services or functions promoting public interests need to be aligned with the business reference model of Korean government. To define ten types of drone uses for public sector, we combine the business types of government with the future uses of drones that are proposed by futurists and business analysts. Future uses of drones can be divided into three sectors or services. First, drone services for public or military sectors include early warning systems, emergency services, news reporting, police drones, library drones, healthcare drones, travel drones. Second, drone services for commercial or industrial services include parcel delivery drones, gaming drones, sporting drones, farming and agriculture drones, ranching drones, robotic arm drones. Third, drone services for household sector include smart home drones.

W-Band Radar Altimeter for Drones (드론용 W-대역 레이다 고도계)

  • Lee, Yong-Seok;Lee, Gwon-Hak;Kim, Jun-Seong;Park, Jae-Hyun;Kim, Byung-Sung;Song, Reem
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.4
    • /
    • pp.314-319
    • /
    • 2019
  • In this study, we propose a W-band frequency modulated continuous wave(FMCW) radar altimeter that can measure the altitude based on the frequency differences of transmitted and received signals. This W-band FMCW system is powered by an altitude control algorithm, which we propose to help prevent collisions of drones with obstacles in real deployment by measuring the relative altitude. It is shown that this algorithm enables the drone to be positioned within a 3 % error of altitude from the desired input height. The chip used in the W-band transmitter and receiver was fabricated using a 65-nm CMOS process, and a horn antenna was directly fed by incorporating an embedded waveguide feeder into the chip. The clutter spectra observed in terrains including soil, grass, and calm lake water were measured and compared, confirming the reflectivity characteristics of various surfaces of different water contents.