• Title/Summary/Keyword: altitude angle

Search Result 212, Processing Time 0.026 seconds

Numerical Study and Thrust Prediction of Pintle-Controlled Nozzle with Split-line TVC System (스플릿라인 TVC 시스템을 적용한 핀틀 추력조절 노즐의 유동해석 및 추력 성능 예측)

  • Jo, Hana
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.3
    • /
    • pp.43-53
    • /
    • 2022
  • In this study, analysis of the flow characteristics of pintle-controlled nozzle with split-line TVC system and the thrust performance prediction was performed. The numerical computation was verified by comparing the thrust coefficient derived from the analysis results with the experimental data. By applying the same numerical analysis technique, the flow characteristics of nozzle were confirmed according to operating altitude, pintle stroke position and TVC angle with the 1/10 scale. As the TVC angle increased, thrust loss occurred and the tendency of AF was different depending on the position of the pintle stroke. Based on the analysis results, the relation of thrust coefficient was derived by applying the response surface methods. The thrust performance model with a slight difference of 1.2% on average from the analysis result was generated.

Automatic Landing in Adaptive Gain Scheduled PID Control Law

  • Ha, Cheol-Keun;Ahn, Sang-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2345-2348
    • /
    • 2003
  • This paper deals with a problem of automatic landing guidance and control system design. The auto-landing control system for the longitudinal motion is designed in the classical PID controller. The controller gains are properly adapted to variation of the performance using fuzzy logic as a gain scheduler for the PID gains. This control logic is applied to the problem of the automatic landing control system design. From the numerical simulation using the 6DOF nonlinear model of the associated airplane, it is shown that the auto-landing maneuver is successfully achieved from the start of the flight conditions: 1500 ft altitude, 250 ft/sec airspeed and zero flight path angle.

  • PDF

Compromise Optimal Design using Control-based Analysis of Hypersonic Vehicles

  • Liu, Yanbin;bing, Hua
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.137-147
    • /
    • 2015
  • Hypersonic vehicles exhibit distinct dynamic and static characteristics, such as unstable dynamics, strict altitude angle limitation, large control bandwidth, and unconventional system sensitivity. In this study, compromise relations between the dynamic features and static performances for hypersonic vehicles are investigated. A compromise optimal design for hypersonic vehicles is discussed. A parametric model for analyzing the dynamic and static characteristics is established, and then the optimal performance indices are provided according to the different design goals. A compromise optimization method to balance the dynamic and static characteristics is also discussed. The feasibility of this method for hypersonic vehicles is demonstrated.

An obstacle avoidance system of an unmanned aerial vehicle using a laser range finder

  • Kim, Hyun;Miwa, Masafumi;Shim, Joonhwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.737-742
    • /
    • 2013
  • Recently, unmanned aircrafts for safe measurement in hazardous locations have been developed. In a method of operation of unmanned aircraft vehicles (UAV), there are two methods of manual control and automatic control. Small UAVs are used for low altitude surveillance flights where unknown obstacles can be encountered. Obstacle avoidance is one of the most challenging tasks which the UAV has to perform with high level of accuracy. In this study, we used a laser range finder as an obstacle detector in automatic navigation of unmanned aircraft to patrol the destination automatically. We proposed a system to avoid obstacles automatically by measuring the angle and distance of the obstacle using the laser range finder.

Longitudinal Flight Control of a Transport Aircraft Using Thrust Only

  • Ochi, Y.;Kanai, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.148.3-148
    • /
    • 2001
  • This paper deals with a problem of decreasing the airspeed and the altitude of a transport aircraft using thrust only. Such a situation can occur, if the aircraft loses all hydraulic power that drives the control surfaces. A controller for flight path angle control is designed using the model following servo control method, which is a PI-type optimal regulator. For computer simulation, a simulation model that covers a range of flight envelope is made using given linear models and trim points at some flight conditions. Nondimensional aerodynamic coefficients, derivatives and trim points that are not at the given trim points are computed by linear interpolation. The model is effective in simulation where the trim point varies. Simulation using ...

  • PDF

Simple formulas for the fuel of climbing propeller driven airplanes

  • Labonte, Gilles
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.4
    • /
    • pp.367-389
    • /
    • 2015
  • Simple solutions are obtained for the fuel required by internal combustion engine airplanes on trajectories with a constant rate of climb or descent. Three modes of flight are considered: constant speed, constant Mach number and constant angle of attack. Starting from the exact solutions of the equations of motion for the modes of motion considered, approximate solutions are obtained that are much easier to compute while still being quite precise. Simpler formulas are derived for the weight of fuel, speed, altitude, horizontal distance, time to climb, and power required. These formulas represent a new important contribution since they are fundamental for the analysis of aircraft dynamics and thus have direct applications for the analysis of aircraft performances and mission planning.

Pedestrian Safety Road Marking Detection Using LRF Range and Reflectivity (LRF (Laser Range Finder) 거리와 반사도를 이용한 보행자 보호용 노면표시 검출기법 연구)

  • Im, Sung-Hyuck;Im, Jun-Hyuck;Yoo, Seung-Hwan;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.1
    • /
    • pp.62-68
    • /
    • 2012
  • In this paper, a detection method of a pedestrian safety road marking was proposed. The proposed algorithm uses laser range and reflectivity of a range finder (LRF). For a detection of crosswalk marking and stop line, the DFT (Discrete Fourier Transform) of reflectivity and cross-correlation method between the reference replica and the measured reflectivity are used. A speed bump is detected through measuring an altitude difference of two LRFs which have the different tilted angle. Furthermore, we proposed a velocity constrained a detection method of a speed bump. Finally, the proposed methods are tested in on-line, on the pavement of a road. The considered road markings are wholly detected. The localization errors of both road markings are smaller than 0.4 meter.

Nonlinear Aeroelastic Analysis of a High-Aspect-Ratio Wing with Large Deflection Effects

  • Kim, Kyung-Seok;Lim, In-Gyu;Lee , In;Yoo, Jae-Han
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.99-105
    • /
    • 2006
  • In this study, nonlinear static and dynamic aeroelastic analyses for a high-aspect-ratio wing have been performed. To achieve these aims, the transonic small disturbance (TSD) theory for the aerodynamic analysis and the large deflection beam theory considering a geometrical nonlinearity for the structural analysis are applied, respectively. For the coupling between fluid and structure, the transformation of a displacement from the structural mesh to the aerodynamic grid is performed by a shape function which is used for the finite element and the inverse transformation of force by work equivalent load method. To validate the current method, the present analysis results of a high-aspect-ratio wing are compared with the experimental results. Static deformations in the vertical and torsional directions caused by an angle of attack and gravity loading are compared with experimental results. Also, static and dynamic aeroelastic characteristics are investigated. The comparisons of the flutter speed and frequency between a linear and nonlinear analysis are presented.

Bit error probability and channel capacity in the return link of GLOBALSTAR-A CDMA LEO mobile satellite system (CDMA 방식의 저궤도 이동위성통신 시스템 GLOBALSTAR 역방향 링크의 비트오율 및 채널용량에 관한 연구)

  • 강형진;김동인
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.7
    • /
    • pp.1448-1458
    • /
    • 1997
  • In this paper the reverse link of the GLOBALSTAR-the representative CDMA LEO satellite system and LEO mobile satellite channel are developed by the SPW software simulation tool. And the performance of the system is evaluated. GLOBALSTAR is designed to give cellular-type service to hand-held user terminals through a constellation of 48 LEO satellites in circular orbites with 1414 Km altitude. Since LEO mobile satellite system communicates with mobile unit, it is suffered from severe multipath fading and shadowing. The fast mobility of LEO satellites makes the channel condition time vering. So, the LEO mobile satellite channel is different from land mobile channels. In this unique LEO satellite channel, it is shown that the performance of the GLOBALSTAR reverse link is varied according to the elevational angle, but this variation is overcome by satellite path diversity.

  • PDF

Analysis of Characteristics of the HEMP Coupling Signal for a Line Over Ground (접지면 위 도선에 대한 고고도 전자기 펄스 신호의 결합 특성 분석)

  • Lee, Jin-Ho;Kwon, Joon-Hyuck;Shin, Guy-Beom;Kang, Rae-Choong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1172-1179
    • /
    • 2010
  • Since HEMP has the very short rising time and propagates widespreadly with several tens of kV/m, it threatens most of systems in its cover range. Therefore, it is important to research coupling mechanism into systems and establish countermeasures for the HEMP to protect systems effectively. This paper analyzed characteristics and trends of currents to be induced at the load of a line which is located over ground with different conditions such as polarization, incidence angle, line length and height etc. We applied double exponential waveform as the HEMP shape and used BLT method to analyze the coupling route into the line. Also, we compared the simulation data of chain matrix modeling to verify reliability of BLT modeling. In the result, two data is almost agreed.