• 제목/요약/키워드: alternative stabilization diagram

검색결과 3건 처리시간 0.016초

Stable modal identification for civil structures based on a stochastic subspace algorithm with appropriate selection of time lag parameter

  • Wu, Wen-Hwa;Wang, Sheng-Wei;Chen, Chien-Chou;Lai, Gwolong
    • Structural Monitoring and Maintenance
    • /
    • 제4권4호
    • /
    • pp.331-350
    • /
    • 2017
  • Based on the alternative stabilization diagram by varying the time lag parameter in the stochastic subspace identification analysis, this study aims to investigate the measurements from several cases of civil structures for extending the applicability of a recently noticed criterion to ensure stable identification results. Such a criterion demands the time lag parameter to be no less than a critical threshold determined by the ratio of the sampling rate to the fundamental system frequency and is firstly validated for its applications with single measurements from stay cables, bridge decks, and buildings. As for multiple measurements, it is found that the predicted threshold works well for the cases of stay cables and buildings, but makes an evident overestimation for the case of bridge decks. This discrepancy is further explained by the fact that the deck vibrations are induced by multiple excitations independently coming from the passing traffic. The cable vibration signals covering the sensor locations close to both the deck and pylon ends of a cable-stayed bridge provide convincing evidences to testify this important discovery.

A novel recursive stochastic subspace identification algorithm with its application in long-term structural health monitoring of office buildings

  • Wu, Wen-Hwa;Jhou, Jhe-Wei;Chen, Chien-Chou;Lai, Gwolong
    • Smart Structures and Systems
    • /
    • 제24권4호
    • /
    • pp.459-474
    • /
    • 2019
  • This study develops a novel recursive algorithm to significantly enhance the computation efficiency of a recently proposed stochastic subspace identification (SSI) methodology based on an alternative stabilization diagram. Exemplified by the measurements taken from the two investigated office buildings, it is first demonstrated that merely one sixth of computation time and one fifth of computer memory are required with the new recursive algorithm. Such a progress would enable the realization of on-line and almost real-time monitoring for these two steel framed structures. This recursive SSI algorithm is further applied to analyze 20 months of monitoring data and comprehensively assess the environmental effects. It is certified that the root-mean-square (RMS) response can be utilized as an excellent index to represent most of the environmental effects and its variation strongly correlates with that of the modal frequency. More detailed examination by comparing the monthly correlation coefficient discloses that larger variations in modal frequency induced by greater RMS responses would typically lead to a higher correlation.

Mode identifiability of a cable-stayed bridge under different excitation conditions assessed with an improved algorithm based on stochastic subspace identification

  • Wu, Wen-Hwa;Wang, Sheng-Wei;Chen, Chien-Chou;Lai, Gwolong
    • Smart Structures and Systems
    • /
    • 제17권3호
    • /
    • pp.363-389
    • /
    • 2016
  • Deficient modes that cannot be always identified from different sets of measurement data may exist in the application of operational modal analysis such as the stochastic subspace identification techniques in large-scale civil structures. Based on a recent work using the long-term ambient vibration measurements from an instrumented cable-stayed bridge under different wind excitation conditions, a benchmark problem is launched by taking the same bridge as a test bed to further intensify the exploration of mode identifiability. For systematically assessing this benchmark problem, a recently developed SSI algorithm based on an alternative stabilization diagram and a hierarchical sifting process is extended and applied in this research to investigate several sets of known and blind monitoring data. The evaluation of delicately selected cases clearly distinguishes the effect of traffic excitation on the identifiability of the targeted deficient mode from the effect of wind excitation. An additional upper limit for the vertical acceleration amplitude at deck, mainly induced by the passing traffic, is subsequently suggested to supplement the previously determined lower limit for the wind speed. Careful inspection on the shape vector of the deficient mode under different excitation conditions leads to the postulation that this mode is actually induced by the motion of the central tower. The analysis incorporating the tower measurements solidly verifies this postulation by yielding the prevailing components at the tower locations in the extended mode shape vector. Moreover, it is also confirmed that this mode can be stably identified under all the circumstances with the addition of tower measurements. An important lesson learned from this discovery is that the problem of mode identifiability usually comes from the lack of proper measurements at the right locations.