• Title/Summary/Keyword: alteration zone

Search Result 158, Processing Time 0.024 seconds

Analysis on the Type of Damaged Land in DeMilitarized Zone(DMZ) Area and Restoration Direction (비무장지대(DMZ) 인근의 훼손지 유형 분석 및 복원방향)

  • Sung, Hyun-Chan;Kim, Su-Ryeon;Kang, Da-In;Seo, Joung-Young;Lee, Sang-Mi
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.1
    • /
    • pp.185-193
    • /
    • 2016
  • Purpose of this study is to classify damaged lands according to the cause of the damage and their influences based on characteristic of the damaged lands in DeMilitarized Zone(DMZ) area, and utilize this study as a fundamental study for establishment of ecosystem restoration system. Literature review and field survey have been conducted to review the damage status of DMZ area. For field survey, first year and second year have been conducted, in which type of the damage has been reviewed in this study. In the result, types of damage have been classified into 6 categories: 'alteration of initial landform', 'loss of surface layer', 'land pollution', 'alteration of soil chemical property', 'decline of vegetation', and 'invasion of foreign species'. Restoration for each damage type is as following. First, for alteration of initial landform, the land is restored to the original landform prior to the damage and connection to surrounding ecosystem is considered. Second, for loss of surface layer, lost surface layer is restored or further loss is prevented with stabilization. Third, for land pollution, source of the pollution is eradicated or self-circulation with purification of polluted land is encouraged. Fourth, for alteration of soil chemical property, soil is restored of its original property with eradication of the pollution source and improvement of soil. Fifth, for decline of vegetation, current vegetation and anticipated alteration in future are considered and number of wild species is to be increased based on structure and characteristic of nearby vegetation. Sixth, for invasion of foreign species, prevention of dominance by risky species and facilitation ecological stability with ecological management are to be considered. Influence according to the cause of damage has occurred in secondary(indirect) influence or simultaneous occurrence of several damage types. Considering all these aspects, when type of the damage is complex, restoration process for each of former mentioned 6 damage types with solitary influence should be considered in unison.

Chemical weathering in King George Island, Antarctica

  • Jeong, Gi-Young
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.66-66
    • /
    • 2003
  • King George island, Antarctica, is mostly covered by ice sheet and glaciers, but the land area is focally exposed for several thousand years after deglaciation. For a mineralogical study of chemical weathering in the polar environment, glacial debris was sampled at the well-developed patterned ground which was formed by long periglaclal process. As fresh equivalents, recently exposed tills were sampled at the base of ice cliff of outlet glaciers and at the melting margin of ice cap together with fresh bedrock samples. Fresh tills are mostly composed of quartz, plagioclase, chlorite, and illite, but those derived from hydrothermal alteration zone contain smectite and illite-smectite. In bedrocks, chlorite was the major clay minerals in most samples with minor illite near hydrothermal alteration zone and interstratified chlorite-smectite in some samples. Smectite closely associated with eolian volcanic glass was assigned to alteration in their source region. Blocks with rough surface due to chemical disintegration showed weathering rinds of several millimeter thick. Comparision between inner fresh and outer altered zones did not show notable change in clay mineralogy except dissolution of calcite and some plagioclase. Most significant weathering was observed in the biotite flakes, eolian volcanic glass, sulfides, and carbonates in the debris. Biotite flakes derived from granodiorite were altered to hydrobiotite and vermiculite of yellow brown color. Minor epitactic kaolinite and gibbsite were formed in the cleaved flakes of weathered biotite. Pyrite was replaced by iron oxides. Calcite was congruently dissolved. Volcanic glass of basaltic andesite composition showed alteration rim of several micrometer thick or completely dissolved leaving mesh of plagioclase laths. In the alteration rim, Si, Na, Mg, and Ca were depleted, whereas Al, Ti, and Fe were relatively enriched. Mineralization of lichen and moss debris is of much interest. They are rich of A3 and Si roughly in the ratio of 2:1 to 3:1 typical of allophane. In some case, Fe and Ti are enriched in addition to Al and Si. Transmission electron microscopy of the samples rich of volcanic glass showed abundant amorphous aluminosilicates, which are interpreted as allophane. Chemical weathering in the King George Island is dominated by the leaching of primary phyllosilicates, carbonates, eolian volcanic glass, and minor sulfides. Authigenesls of clay minerals is less active. Absence of a positive evidence of significant authigenic smectite formation suggests that its contribution to the clay mineralogy of marine sediments are doubtful even near the maritime Antarctica undergoing a more rapid and intenser chemical weathering under more humid and milder climate.

  • PDF

Study on Constituent Minerals and Illitization Characteristics of Yeongdong Illite Ore (영동 일라이트 광체의 구성광물 및 일라이트화 특성 연구)

  • EunJi Baek;Yu Na Lee;Byeongyong Yu;Dongbok Shin;Youngseuk Keehm;Sun Young Park;Hyun Na Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.1
    • /
    • pp.41-54
    • /
    • 2023
  • Illite is a common mineral that forms readily from feldspar and mica via hydrothermal alteration and exhibits various characteristics depending on the degree of hydrothermal alteration. To ensure continued mining of high-quality illite ore, it is crucial to understand the illitization. Thus, this study collected ores from two illite ore deposit and their surrounding alteration zones in Yeongdong-gun, Chungcheongbuk-do, a significant source of illite in the Republic of Korea, to determine the constituent mineral contents and textural characteristics. Polarized light microscopy analyses revealed that the illite ore deposit were highly illitized with little remaining textural characteristics of the parent mica schist, and only some quartz was present. The ore zone contained illite, muscovite, quartz, and feldspar, with illitization primarily occurring around feldspar and quartz. X-ray diffraction analyses identified that the content of illite/muscovite was approximately 50-75 wt.%, with a maximum of 75 wt.%. Additionally, X-ray fluorescence analyses indicated a linear increase in K2O content with increasing illite content, showing the highest correlation among the major components analyzed. It is suggested that the illite in the Yeongdong area results from feldspar and quartz alteration by hydrothermal fluids along the fault, with illitization of feldspar occurring before that of quartz. The results of this study are expected to contribute to the development of high-quality illite ore deposit in Yeongdong, Chungcheongbuk-do.

Calculation of Compensation to Parcels for Land Alternation Considering the Range of Adjoining Zone to Road (접도구역 구간을 고려한 토지이동 대상필지 보상비 산정)

  • LEE, Geun-Sang;CHOI, Myeong-Hei;CHOI, Yun-Woong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.2
    • /
    • pp.16-27
    • /
    • 2015
  • The parcels of land alteration by existing manual work was very inefficient in terms of time and costs. Especially it caused many difficulty in estimating compensation since the work didn't take into account the range of adjoining zone to road. This study selected Gimje City of Jeollabuk-Do as a study site and could analyze the numbers and areas of parcels of land alteration considering the range of adjoining zone to road based on cadastral maps and wide road layers from new address system. Also this study applied a fuzzy membership function according to occupation ratio to road, and analyzed compensation by the range of adjoining zone to road using individual public land price information of the parcels for land alternation. Especially, the change aspect of public and private parcels could be investigated by the range of adjoining zone to road according to the fuzzy membership function. And this study could provide very efficient data in determining the priority of the parcels for land alternation through calculating compensation of the parcels for land alternation by Eup Myeong Dong according to the range of adjoining zone to road.

Mineralogy, Genesis and Potential of a New Tertiary Mineralized Zone in Yeongil Area, Korea (영일지역(迎日地域) 제삼기(第三紀) 신광화대(新鑛化帶)의 광물학적(鑛物學的) 특성(特性), 성인(成因) 및 그 잠재성(潛在性)에 관(關)한 연구(硏究))

  • Kim, Soo Jin;Noh, Jin Hwan
    • Economic and Environmental Geology
    • /
    • v.10 no.2
    • /
    • pp.53-66
    • /
    • 1977
  • Epithermal Mn-Au-Ag deposits of subvolcanic type in the Yeongil area discovered by one (Soo Jin Kim) of the present authors was studied with emphasis on their mineralogy, genesis and future potential. Mineralization is genetically related to volcanic activities of the Tertiary Period, which have produced porphyritic rhyolite, granite porphyry, felsitic rhyolite and agglomerate. Ore deposits are closely associated with felsitic rhyolite. They occur as breccia-filling, veins, or networks. Mineralization is characterized by rhodochrosite-sulfide ores of breccia-type in the central zone, and sulfide ores of disseminated type in the outer zone. Sulfides consist mainly of pyrite and marcasite, with minor chalcopyrite, sphalerite, argentian tetrahedrite, galena and gold in the central zone, and of pyrite, marcasite and argentian tetrahedrite in the outer zone. Sulfides are generally not easily identified with naked eye because of their very fine-grained nature. Wall rock alteration zones are also developed around ore deposits over the large area. Occurrence of ore deposits and the nature of mineralization indicate that the uppermost portion of ore deposits are now exposed on the surface, and therefore, the main mineralized zones are expected in depth.

  • PDF

A study on the improvement in the efficiency of blue phosphorescent organic light-emitting diodes (청색 인광물질을 이용한 유기 발광 다이오드의 효율개선에 관한 연구)

  • Yang, Mi-Youn;Kim, Jun-Ho;Ha, Yun-Kung;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1070-1073
    • /
    • 2004
  • In this study, Tri(1-phenylpyrazolato)iridium $(Ir(ppz)_3)$ was prepared for the pure blue phosphorescent dopant and various host materials were used for the appropriate energy alignment. Although the luminance was pure blue with the CIE coordinates of x = 0.158, y = 0.139, device efficiencies didn't improve yet. Instead of finding the proper host materials, the alteration of structure of OLEDs affected the improvement of electrical and optical characteristics of the devices. It was worthy that insertion the exciton formation zone with the host material between the emitting zone and the exciton blocking layer. The device with a structure of ITO/NPB/Ir(ppz)3 doped in CBP/CBP for the exciton formation zone/BCP/Liq/Al was fabricated and the characteristics were observed compared with the devices without the exciton formation zone. When CBP was used for the exciton formation zone, the device efficiency reached to over 0.25 cd/A. While the device used CBP only for the host showed the luminous efficiency of under 0.11 cd/A

  • PDF

Mineralogy and Genesis of the Pyoungan and Daeheung Talc Deposits in Ultramafic Rocks, the Yoogoo Area (초염기성암 기원의 평안 및 대흥활석광상의 성인과 광물화학)

  • Yun, Sang Pil;Moon, Hi-Soo;Song, Yungoo
    • Economic and Environmental Geology
    • /
    • v.27 no.2
    • /
    • pp.131-145
    • /
    • 1994
  • The Daehung and Pyeongan talc mines are located in the Yoogoo area, Chungcheongnam-Do. These deposits occur as the complex vein type in the ultramafic rocks which intruded Precambrian gneiss. The talc ore formed from sepentinitt: originated from ultramafic rocks but some of those from hornblende gneiss. The talcification processes were considered here on the basis of the mineral assemblages, paragenesis, and geochemistry. It appears that there are five processes in talcification ; serpentine$\rightarrow$talc, phlogopite$\rightarrow$chlorite$\rightarrow$talc, phlogopite$\rightarrow$talc, hornblende$\rightarrow$chlorite$\rightarrow$talc, and hornblende$\rightarrow$talc. Among them, the most dominant alteration path is serpentine to talc in these deposits. EPMA data suggest that there might be interstratified minerals were in between parent mineral and talc such as serpentine and talc, and phlogopite and talc. It can be found that tremolite exists in between the inner and outer most part of talcified serpentinite blocks coated with phlogopite. Some of tremolites has been altered to talc. The quartz veins and carbonate minerals were found in the talc ore zone. It indicates that the hydrothermal solution played an important role in talcification. The hydrothermal alteration occured after sepentinization. Ore zones can be divided into two zones; talc-serpentine zone preserving a pseudormorph of olivine (mesh texture) and talc-phlogopite zone showing talcification from phlogopite directly or through chlorite. It can be concluded that the formation of major talc ore body was due to talcification of serpentinite and phlogopite by hydrothermal solution. A nature of hydrothermal solution was relatively pure water at the beginning of serpentinization, and was getting richer in silica composition. There was a large amount influx of K and AI with hydrothermal solution in the later stage, and increased $P_{CO_{2}}$ also. It suggests that phlogopite formed in later stages as a secondary mineral. So, the major part of the talc ore body was formed from one parents rocks, serpentinite originated from ultramafic rocks, by hydrothermal solutions at several times.

  • PDF

Mineralogy and Genesis of Fe-Cu and Au-Bi-Cu Deposits in the Geodo Mine, Korea (거도광산(巨道鑛山) Fe-Cu 및 Au-Bi-Cu 광상(鑛床)에 대(對)한 광물학적(鑛物學的) 및 성인적(成因的) 연구(硏究))

  • Ko, Jai Dong;Kim, Soo Jin
    • Economic and Environmental Geology
    • /
    • v.15 no.4
    • /
    • pp.189-204
    • /
    • 1982
  • The Geodo mine is located in the southern limb of the Hambaeg syncline. Geology of the area consists of Paleozoic-Mesozoic sedimentary Rocks and Cretaceous igneous rocks. The important igneous rocks presumably related to skarnization and ore mineralization in the area, are the early granodiorite and the late porphyritic granodiorite. Two mineralogical types of ore deposits are recognized in the area. They are the Fe-Cu deposits in the Myobong formation and the Au-Bi-Cu deposits in the Hwajeol formation. Contact metamorphism due to granodiorite intrusion includes hornfelsization, exoskarnization and endoskarnization. Wall-rock alterations related to the Fe mineralization are grouped into the hydrothermal replacement skarnization and the hydrothermal filling skarnization. Another hydrothermal alteration is associated with the Cu mineralization. Various mineralogical analyses have been applied for the identification of minerals. They include optical microscopy, chemical analysis, etching test, X-ray diffraction, and infrared absorption spectroscopic analyses. The ore minerals in these ore deposits are classified into two groups;hypogene and supergene minerals. Hypogene minerals consist of magnetite, pyrite, chalcopyrite, and chalcocite. Supergene minerals consist of chalcocite, bornite, and geothite. Ore minerals show various kinds of ore texture: open-space filling, exsolution, replacement, and cementation texture. The gangue minerals consist of quartz, diopside, epidote, garnet and plagioclase in the hornfelsic zone, garnet, diopside, scapolite, actinolite, sericite, chlorite, quartz, and calcite in the skarn zone, and, epidote, chlorite, sericite, quartz, and calcite in the late hydrothermal alteration zone. This study shows that the Fe-Cu deposits are of metasomatic pipe type with the later hydrothermal fillings, and the Au-Bi-Cu deposits are of hydrothermal fissure-filling type. The mineralization is probably related to the intrusion of porphyritic granite.

  • PDF

A Study o the Geological Occurrence, the Mineralogical and Physico-chemical Properties of the Sericite Ore from the Yangbuk Area, Kyungsangbuk-do (경북 양북지역산 견운모광석의 물성 및 부존산상)

  • 이동진;고상모
    • Journal of the Mineralogical Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.85-96
    • /
    • 1998
  • The sericite ore is formed by the hydrothermal alteration of rhyodacitic welded tuff. The alteration zone of the host rock can be classified into four types based on the mineral assemblages ; sericite, quartz-sericite, silicified and propylite zone. The sericite ore mainly occurs as vein types and fault clay along the fault plane in the quartz-sericite zone. Mineral components of the sericite ore are mainly sericite with minor diaspore, corundum and pyrite. The sericitic porcelaineous ore is mainly composed of quartz and sericite. Accessory minerals are muscovite, diaspore, sphene, corundum, pyrite, iron-oxides and etc. The chemical compositions of K2O, Al2O3, and ignition loss in the sericite ore increase largely than that of the host rock, while the compositions of SiO2, Na2O and Fe2O3 decrease. XRD patterns of the heat-treated sericite ores show the formation of mullite at $1,200^{\circ}C$. and the diaspore-bearing sericite ore forms mullite and corundum at $1,200^{\circ}C$. The differential thermal analysis of the sericite ores show small endothermic peak at 645~668$^{\circ}C$. and the diaspore-bearing sericite ore shows a strong endothermic peak at $517^{\circ}C$. It indicates that the decomposition of diaspore appear at lower temperature than that of sericite. The thermal expansivity of the sericite ores show the similar pattern. The sericite ores show the thermal expansivity of 3.3~4.7% at 900$^{\circ}C$ and 0.39~0.75% at 1,20$0^{\circ}C$, respectively. DTA-TG curves of the sericite ores show closely relations with the thermal expansivity.

  • PDF

Occurrence and Physico-chemical Properties of the Smectite-rich Clays from the Samcheok Area in Kangwon-do, Korea (강원도 삼척지역의 스멕타이트질 점토의 산상 및 특성)

  • Hwang, Jin-Yeon;Park, Seong-Wan;Lee, Sang-Hyon;Choi, Soo-Yong
    • Economic and Environmental Geology
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 1995
  • The smectite-rich clays were found locally in Paleozoic calcareous sedimentary rocks in the Samcheok area. Their occurrences were investigated in detail, and the physico-chemical properties of the clays were also determined by X-ray diffraction, chemical analysis, thermal analysis and cation exchanging experiment. The smectite clays occur as the fissure filling dyke developed in calcareous sedimentary rock and as alteration products of intrusive rhyolite. Most of clays occur at the contact between the sedimentary rock and the rhyolite, and the alteration zone was observed only in rhyolite body close to the contact. Judging from their occurrences, it is believed that the smectite-rich clays in this area were formed by the hydrothemal alteration. The smectite clays from the area are mainly composed of Ca-montmorillonite, and associated with small quantities of quartz, opal-CT and feldspar. The montmorillonites from this area are lower in Fe content, and higher in exchangeable Ca ion, compared to those of bentonite from the Yangnam-Yeongil area.

  • PDF