• 제목/요약/키워드: alpha particle

검색결과 386건 처리시간 0.023초

미세구조 조절에 의한 고투자율 Mn-Zn Ferrite의 특성제어 (Control of Electromagnetic Properties of High Initial Permeability Mn-Zn Ferrite with the Microstructure Control)

  • 도세욱;류지태;김정희;강태현;허원도
    • 자원리싸이클링
    • /
    • 제7권4호
    • /
    • pp.50-54
    • /
    • 1998
  • 원하는 전자기적 특성인 높은 초투자율과 우수한 주파수 의존특성을 얻기 위해 Mn-Zn 페라이트계에서 핵입자의 첨가효과를 실험하였다. 소결온도에서 가소된 핵입자를 첨가함에 따라 비정상 입자성장이 말끔히 사라졌지만, 페라이트의 소결밀도와 초투자율이 감소하였다. 이와 반대로 매트릭스 입자의 가소온도보다 낮은 온도에서 가소된 핵입자의 첨가시에는 비정상 입자성장이 잔유하였으나, 적정한 핵입자 첨가로 Cutoff Frequency가 변화하지 않는 가운데 10∼20%의 초투자율값의 상승이 있었다.

  • PDF

산화철 합성에 미치는 침전제와 초음파의 영향 (Influence of the Precipitation Medium and Ultrasonic Wave on the Synthesis of Iron Oxide)

  • 임종호;김태현;이승원
    • 한국재료학회지
    • /
    • 제16권11호
    • /
    • pp.687-691
    • /
    • 2006
  • Synthesis of Iron oxides by air oxidation of $FeSO_4$ solutions in the presence of NaOH, Diethylenetriamine (DETA), Butylamine (BA) and influence of ultrasonic wave were investigated by XRD, SEM and particle size analyzer. As the DETA addition increased to 0.05 mol, $Fe_3O_4$ was formed with goethite($\alpha$- FeOOH) and $Fe_3O_4$ single phase was formed above 0.18mol of DETA. As the BA addition increased, the XRD peak intensity of (020) face of lepidocrocite($\gamma$-FeOOH) was developed until the formation of $Fe_3O_4$ and reduced the size of the iron oxide particles formed. Ultrasonic wave reduced the size of the iron oxide particles but gave little effects on the iron oxide particles synthesized by amine.

환원-확산법에 의한 Sm-Fe-N계 자성분말 제조 (Synthesis of Magnetic Powder in the Sm-Fe-N System by the Reduction-Diffusion Process)

  • 이정구;강석원;박상준;오영우;최철진
    • 대한금속재료학회지
    • /
    • 제48권9호
    • /
    • pp.842-846
    • /
    • 2010
  • In the present study, the reduction-diffusion method was employed to produce Sm-Fe alloy powder. It was confirmed that the amount of unreacted ${\alpha}-Fe$ in $Sm_2Fe_{17}$ matrix gradually decreased as the percentage of $Sm_2O_3$ increased. $Sm_2Fe_{17}$ single-phase powder was produced by the reduction-diffusion method with 40% excess $Sm_2O_3$. The Ca and Oxygen contents of the powder were approximately 300 ppm and 1600 ppm, respectively, after washing and acid treatment. By a subsequent nitrogenation, $Sm_2Fe_{17}N_x$ magnetic powders were produced. The coercivity of the powder increased with decreasing of the particle size by ball milling, and the highest coercivity of 2850 Oe was obtained after milling for 10 hours.

Behavior of Radioactive Metal Surrogates Under Various Waste Combustion Conditions

  • Yang, Hee-Chul;Lee, Jae-Hee;Kim, Jung-Guk;Yoo, Jae-Hyung;Kim, Joo-Hyung
    • Nuclear Engineering and Technology
    • /
    • 제34권1호
    • /
    • pp.80-89
    • /
    • 2002
  • A laboratory investigation of the behavior of radioactive metals under the various waste combustion atmospheres was conducted to predict the parameters that influence their partitioning behavior during waste incineration. Neodymium, samarium, cerium, gadolinium, cesium and cobalt were used as non-radioactive surrogate metals that are representative of uranium, plutonium, americium, curium, radioactive cesium, and radioactive cobalt, respectively. Except for cesium, all of the investigated surrogate metal compounds converted into each of their stable oxides at medium temperatures from 400 to 90$0^{\circ}C$, under oxygen- deficient and oxygen-sufficient atmospheres (0.001-atm and 0.21-atm $O_2$). At high temperatures above 1,40$0^{\circ}C$, cerium, neodymium and samarium in the form of their oxides started to vaporize but the vaporization rates were very slow up to 150$0^{\circ}C$ . Inorganic chlorine (NaCl) as well as organic chlorine (PVC) did not impact the volatility of investigated Nd$_2$O$_3$, CoO and Cs$_2$O. The results of laboratory investigations suggested that the combustion chamber operating parameters affecting the entrainment of particulate and filtration equipment operating parameters affecting particle collection efficiency be the governing parameters of alpha radionuclides partitioning during waste incineration.

MEASUREMENT OF THE D-D NEUTRON GENERATION RATE BY PROTON COUNTING

  • Kim, In-Jung;Jung, Nam-Suk;Choi, Hee-Dong
    • Nuclear Engineering and Technology
    • /
    • 제40권4호
    • /
    • pp.299-304
    • /
    • 2008
  • A detection system was set up to measure the neutron generation rate of a recently developed D-D neutron generator. The system is composed of a Si detector, He-3 detector, and electronics for pulse height analysis. The neutron generation rate was measured by counting protons using the Si detector, and the data was crosschecked by counting neutrons with the He-3 detector. The efficiencies of the Si and He-3 detectors were calibrated independently by using a standard alpha particle source $^{241}Am$ and a bare isotopic neutron source $^{252}Cf$, respectively. The effect of the cross-sectional difference between the D(d,p)T and $D(d,n)^3He$ reactions was evaluated for the case of a thick target. The neutron generation rate was theoretically corrected for the anisotropic emission of protons and neutrons in the D-D reactions. The attenuations of neutron on the path to the He-3 detector by the target assembly and vacuum flange of the neutron generator were considered by the Monte Carlo method using the MCNP 4C2 code. As a result, the neutron generation rate based on the Si detector measurement was determined with a relative uncertainty of ${\pm}5%$, and the two rates measured by both detectors corroborated within 20%.

Different Protein Expression between Human Eosinophilic Leukemia Cells, EoL-1 and Imatinib-resistant EoL-1 Cells, EoL-1-IR

  • Sung, Kee-Hyung;Kim, In-Sik;Lee, Ji-Sook
    • 대한의생명과학회지
    • /
    • 제24권4호
    • /
    • pp.426-429
    • /
    • 2018
  • Chronic eosinophilic leukemia (CEL) is characterized by eosinophilia and organ damage. Imatinib is widely used for treating CEL, chronic myeloid leukemia (CML) and acute myeloid leukemia (AML). Unfortunately, the cancer cells gain resistance against the drug after prolonged molecular-targeted therapies. Imatinib-resistant EoL-1 (EoL-1-IR) cells were produced from chronic eosinophilic leukemia cells (EoL-1) after treatment with imatinib for a long duration. Two-dimensional electrophoresis (2-DE) analysis revealed numerous protein variations in the EoL-1 and EoL-1-IR sub-types. Compared to the EoL-1 cells, expression levels of TIP49, RBBP7, ${\alpha}$-enolase, adenosine deaminase, C protein, galactokinase, eukaryotic translation initiation factor, $IFN-{\gamma}$, and human protein homologous to DROER were increased, whereas core I protein, proteasome subunit p42, heterogeneous ribonuclear particle protein, chain B, and nucleoside diphosphate were decreased in the EoL-1-IR cells. Taken together, these results contribute to understanding the pathogenic mechanism of drug-resistant diseases.

Measurement of fast ion life time using neutron diagnostics and its application to the fast ion instability at ELM suppressed KSTAR plasma by RMP

  • Kwak, Jong-Gu;Woo, M.H.;Rhee, T.
    • Nuclear Engineering and Technology
    • /
    • 제51권7호
    • /
    • pp.1860-1865
    • /
    • 2019
  • The confinement degradation of the energetic particles during RMP would be a key issue in success of realizing the successful energy production using fusion plasma, because a 3.5 MeV energetic alpha particle should be able to sustain the burning plasma after the ignition. As KSTAR recent results indicate the generation of high-performance plasma(${\beta}_p{\sim}3$), the confinement of the energetic particles is also an important key aspect in neutral beam driven plasma. In general, the measured absolute value of the neutron intensity is generally used for to estimating the confinement time of energetic particles by comparing it with the theoretical value based on transport calculations. However, the availability of, but for its calculation process, many accurate diagnostic data of plasma parameters such as thermal and incident fast ion density, are essential to the calculation process. In this paper, the time evolution of the neutron signal from an He3 counter during the beam blank has permitted to facilitate the estimation of the slowing down time of energetic particles and the method is applied to investigate the fast ion effect on ELM suppressed KSTAR plasma which is heated by high energy deuterium neutral beams.

Towards effective indirect radioisotope energy converters with bright and radiation hard scintillators of (Gd,Y)3Al2Ga3O12 family

  • Korzhik, M.;Abashev, R.;Fedorov, A.;Dosovitskiy, G.;Gordienko, E.;Kamenskikh, I.;Kazlou, D.;Kuznecova, D.;Mechinsky, V.;Pustovarov, V.;Retivov, V.;Vasil'ev, A.
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2579-2585
    • /
    • 2022
  • Ceramics of quaternary garnets (Gd,Y)3Al2Ga3O12 doped with Ce, Tb have been fabricated and evaluated as prospective materials for indirect energy converters of α-and β-voltaic. Samples were characterized at excitation with an X-ray source and an intense 150 keV electron beam and showed good temperature stability of their emission and tolerance to irradiation. The role of X-rays accompanied the α-particle emitting in the increase of the conversion efficiency is clarified. The garnet-type structure of the matrix in the developed materials allows the production of quality crystalline mass with a light yield exceeding that of the commonly used YAG: Ce scintillator by a factor of two times.

α-Synuclein Disrupts Vesicle Fusion by Two Mutant-Specific Mechanisms

  • Yoo, Gyeongji;An, Hyeong Jeon;Yeou, Sanghun;Lee, Nam Ki
    • Molecules and Cells
    • /
    • 제45권11호
    • /
    • pp.806-819
    • /
    • 2022
  • Synaptic accumulation of α-synuclein (α-Syn) oligomers and their interactions with VAMP2 have been reported to be the basis of synaptic dysfunction in Parkinson's disease (PD). α-Syn mutants associated with familial PD have also been known to be capable of interacting with VAMP2, but the exact mechanisms resulting from those interactions to eventual synaptic dysfunction are still unclear. Here, we investigate the effect of α-Syn mutant oligomers comprising A30P, E46K, and A53T on VAMP2-embedded vesicles. Specifically, A30P and A53T oligomers cluster vesicles in the presence of VAMP2, which is a shared mechanism with wild type α-Syn oligomers induced by dopamine. On the other hand, E46K oligomers reduce the membrane mobility of the planar bilayers, as revealed by single-particle tracking, and permeabilize the membranes in the presence of VAMP2. In the absence of VAMP2 interactions, E46K oligomers enlarge vesicles by fusing with one another. Our results clearly demonstrate that α-Syn mutant oligomers have aberrant effects on VAMP2-embedded vesicles and the disruption types are distinct depending on the mutant types. This work may provide one of the possible clues to explain the α-Syn mutant-type dependent pathological heterogeneity of familial PD.

진공자외선 여기에 의한 YAGG:Ce3+ 형광체의 광발광 특성에 미치는 Al2O3 나노입자 원료의 결정상의 영향 (Effect of the Crystalline Phase of Al2O3 Nanoparticle on the Luminescence Properties of YAGG:Ce3+ Phosphor under Vacuum UV Excitation)

  • 우미혜;최성호;정하균
    • 한국재료학회지
    • /
    • 제22권4호
    • /
    • pp.195-201
    • /
    • 2012
  • $Ce^{3+}$-doped yttrium aluminum gallium garnet (YAGG:$Ce^{3+}$), which is a green-emitting phosphor, was synthesized by solid state reaction using ${\alpha}$-phase or ${\gamma}$-phase of nano-sized $Al_2O_3$ as the Al source. The processing conditions and the chemical composition of phosphor for the maximum emission intensity were optimized on the basis of emission intensity under vacuum UV excitation. The optimum heating temperature for phosphor preparation was $1550^{\circ}C$. Photoluminescence properties of the synthesized phosphor were investigated in detail. From the excitation and emission spectra, it was confirmed that the YAGG:$Ce^{3+}$ phosphors effectively absorb the vacuum UV of 120-200 nm and emit green light positioned around 530 nm. The crystalline phase of the alumina nanoparticles affected the particle size and the luminescence property of the synthesized phosphors. Nano-sized ${\gamma}-Al_2O_3$ was more effective for the achievement of higher emission intensity than was nano-sized ${\alpha}-Al_2O_3$. This discrepancy is considered to be because the diffusion of $Al^{3+}$ into $Y_2O_3$ lattice is dependent on the crystalline phase of $Al_2O_3$, which affects the phase transformation of YAGG:$Ce^{3+}$ phosphors. The optimum chemical composition, having the maximum emission intensity, was $(Y_{2.98}Ce_{0.02})(Al_{2.8}Ga_{1.8})O_{11.4}$ prepared with ${\gamma}-Al_2O_3$. On the other hand, the decay time of the YAGG:$Ce^{3+}$ phosphors, irrespective of the crystalline phase of the nano-sized alumina source, was below 1 ms due to the allowed $5d{\rightarrow}4f$ transition of the $Ce^{3+}$ activator.