• Title/Summary/Keyword: allyl ester resin

Search Result 2, Processing Time 0.019 seconds

Synthesis and Characterization of Allyl Ester Resin-Layered Silicate Nanocomposite (알릴 에스터 수지-층상 실리케이트 나노복합재료의 합성과 특성)

  • 팽세웅;김장엽;허완수;조길원;이상원
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.177-184
    • /
    • 2004
  • Polymer-clay nanocomposite containing the low amounts of clay shows improved physical, mechanical properties. In this study, allyl ester prepolymer was synthesised by reactions of the diallyl terephthalate monomers and the 1,3-butanediol monomers. Nanocomposites of allyl ester prepolymer and the two kinds of the organically layered silicate were prepared by using the intercalation method as well as the in-situ polymerization method using. By varying the amount of clay content, curing conditions, and feeding conditions. the nanocomposite was studied using X-ray diffraction. From XRD results, allyl ester-Cloisite 30 B nanocomposite made by the in-situ polymerization method shows better exfoliation behavior compared with the intercalation method. It can be said that the transesterification reaction between functional groups (-OH) of intercalant and monomers results in the increased gallery distance. Also mechanical and thermal properties indicate that the dispersity of clay is an important factor for improving physical properties of the nanocomposite.

Effect of Allyl Modified/Silane Modified Multiwalled Carbon Nano Tubes on the Electrical Properties of Unsaturated Polyester Resin Composites

  • Swain, Sarojini;Sharma, Ram Avatar;Patil, Sandip;Bhattacharya, Subhendu;Gadiyaram, Srinivasa Pavan;Chaudhari, Lokesh
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.6
    • /
    • pp.267-272
    • /
    • 2012
  • Considering the properties of the carbon nano tubes (CNT), their inclusion into the polymer matrix vastly increases the properties of the resultant composite. However, this is not the case due to the poor interfacial adhesion of the CNT and the polymer matrix. The present approach focuses on increasing the interaction between the polymer matrix and the CNT through the chemical modification of the CNT resulting in allyl ester functionalized carbon nanotubes (ACNT) and silane functionalized carbon nano tubes (SCNT) which are capable of reacting with the polymer matrix during the curing reaction. The addition of ACNT/SCNT into unsaturated polyester resin (UPR) resulted in the improvement of the electrical properties of resulted nanocomposites in comparison to the CNT. The surface resistivity, volume resistivity, dielectric strength, dry arc resistivity, and the comparative tracking index of the nanocomposites were significantly improved in comparison to CNT. The chemical modification of CNT was confirmed via spectroscopy.