• Title/Summary/Keyword: alloy thin films

Search Result 226, Processing Time 0.028 seconds

Annealing Characteristics of Pt-Co Alloy thin Films for RTD Temperature Sensors (RTD용 Pt-Co 합금박막의 열처리 특성)

  • Hong, Seog-Woo;Seo, Jeong-Hwan;No, Sang-Soo;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1349-1351
    • /
    • 1998
  • Platinum-Cobalt alloy thin films were deposited on $Al_2O_3$ substrates by r.f. cosputtering for RTD temperature sensors. We made Pt-Co alloy resistance patterns on the $Al_2O_3$ substrates by lift-off method and investigated the physical and electrical characteristics of these films under various conditions (the input power, working vacuum, annealing temperature, thickness of thin films) and also after annealing these films. At input power of Pt : $4.4 W/cm^2$. Co:6.91W/$cm^2$. working vacuum of 10 mTorr and annealing conditions of $1000^{\circ}C$ and 60 min, the resistivity and sheet resistivity of Pt-Co thin films was $15{\mu}{\Omega}{\cdot}cm$ and $0.5{\Omega}/{\square}$, respectively. The TCR value of Pt-Co alloy thin films was measured with various thickness of thin films and annealing conditions. The optimum TCR value is gained under conditions $3000{\AA}$ of thin films thickness and $1000^{\circ}C$ of annealing temperature. These results indicate that Pt-Co alloy thin films have potentiality for the high resolution RTD temperature sensors.

  • PDF

Fabrication of Pt-Co Alloy Thin Films RTD Temperature Sensors (Pt-Co 합금박막 측온저항체 온도센서의 제작)

  • 홍석우;서정환;정귀상;노상수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.431-434
    • /
    • 1998
  • Platinum-Cobalt alloy thin films were deposited on Al$_2$O$_3$ substrate by r.f. cosputtering for RTD temperature sensors. We made Pt-Co alloy resistance patterns on the Al$_2$O$_3$ substrate by lift-off method and investigated the physical and electrical characteristics of these films under various conditions (the input power, working vacuum, annealing temperature, thickness of thin films) and also after annealing these films. At input power of Pt : 4.4 W/$\textrm{cm}^2$, Co : 6.91 W/$\textrm{cm}^2$, working vacuum on and annealing conditions of 1000 $^{\circ}C$ and 60 min, the resistivity and the sheet resistive thin films were 15 ${\mu}$$\Omega$$.$cm and 0.5 $\Omega$/$\square$, respectively. The TCR value of Pt-Co a films was measured with various thickness of thin films and annealing temperature. T TCR value is gained under condition 3000${\AA}$ of thin films thickness and 1000$^{\circ}C$ of temperature. These results indicate that Pt-Co alloy thin films have potentiality for the wide temperature ranges.

  • PDF

The Formation of Pt-Co Alloy Thin Films for RTD Temperature Sensors with Wide Temperature Ranges (광대역 측온저항체 온도센서용 Pt-CO 합금박막의 형성)

  • 김서연;노상수;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.335-338
    • /
    • 1997
  • Platinum-Cobalt alloy thin films were deposited on A1$_2$O$_3$substrate by magnetron cosputtering for RTD temperature sensors with wide temperature ranges. We made Pt-Co alloy resistance patterns on the A1$_2$O$_3$substrate by lift-off method and fabricated Pt-Co alley RTD temperature sensors by using Pt-wire, Pt-paste. We investigated the physical and electrical characteristics of theme films under various conditions, input power, working vacuum, annealing temperature and time, and also after annealing these films. The resistivity and sheet resistivity of these films were decreased with increasing the annealing temperature. At input power of Pt : 4.4 W/cm$^2$, Co : 6.91 W/cm$^2$, working vacuum of 10 mTorr and annealing conditions of 800$^{\circ}C$ and 60 min, the resistivity and sheet resistivity of Pt-Co thin films was 15${\mu}$$\Omega$$.$cm and 0.5$\Omega$/ , respectively, and the TCR value of Pt-Co alloy thin films with thickness of 3000${\AA}$ was 3740ppm/$^{\circ}C$ in the temperature range of 25∼600$^{\circ}C$. These results indicate that Pt-Co alloy thin films hove potentiality for the RTD with wide temperature ranges.

  • PDF

The Fabrication of Hydroxyapatite Targets and the Characteristics of Hydroxyapatite/Ti-6Al-4V Alloy Thin Films by RF Sputtering(I) (RF 스퍼터링용 Hydroxyapatite 타겟의 제조 및 Hydroxyapatite/Ti-6Al-4V 합금 박막의 특성(I))

  • Jung, Chan-Hoi;Kim, Myung-Han
    • Korean Journal of Materials Research
    • /
    • v.13 no.4
    • /
    • pp.205-212
    • /
    • 2003
  • RF sputtering process was applied to produce thin hydroxyapatite[HA, Ca10($PO_4$)$_{6}$ $ (OH)_2$films on Ti-6Al-4V alloy substrates. To make a 101.6 mm dia.${\times}$5 mm HA target, the commercial HA powder was first calcinated for 3h at $200^{\circ}C$. A certain amount of the calcinated HA powder was pressed under a pressure of 20,000 psi by the cold isostatic press(CIP) and the pressed HA target was sintered for 6 h at $1,200^{\circ}C$. The effects of different heat treating conditions on the bonding strength between HA thin films and Ti-6Al-4V alloy substrates were studied. Before deposition, the alloy substrates were annealed for 1 h at $850^{\circ}C$ under $3.0${\times}$10^{-3}$ Xtorr, and after deposition, the hydroxyapatite/Ti-6Al-4V alloy thin films were annealed for 1 h at 400, 600 and $800^{\circ}C$ under the atmosphere, respectively. Experimental results represented that the HA thin films on the annealed substrates had higher hardness than non-heat treated substrates before the deposition.

Fabrication and Characterization of Ni-Cr Alloy Thin Films for Application to Precision Thin Film Resistors

  • Lee, Boong-Joo;Shin, Paik-Kyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.525-531
    • /
    • 2007
  • Ni(75 wt.%)-Cr(20 wt.%)-Al(3 wt.%)-Mn(4 wt.%)-Si(1 wt.%) alloy thin films were prepared using the DC magnetron sputtering process by varying the sputtering conditions such as power, pressure, substrate temperature, and post-deposition annealing temperature in order to fabricate a precision thin film resistor. For all the thin film resistors, sheet resistance, temperature coefficient of resistance (TCR), and crystallinity were analyzed and the effects of sputtering conditions on their properties were also investigated. The oxygen content and TCR of Ni-Cr-Al-Mn-Si resistors were decreased by increasing the sputtering pressure. Their sheet resistance, TCR, and crystallinity were enhanced by elevating the substrate temperature. In addition, the annealing of the resistor thin films in air at a temperature higher than $300^{\circ}C$ lead to a remarkable rise in their sheet resistance and TCR. This may be attributed to the improved formation of NiO layer on the surface of the resistor thin film at an elevated temperature.

The Heat Treatment Characteristics of Hydroxyapatite Thin Films Deposited by RF Sputtering (RF 스퍼터링으로 증착된 하이드록시아파타이트 박막의 열처리 특성)

  • Jung, Chan-Hoi;Lee, Jun-Hee;Shin, Youn-Hak;Kim, Myung-Han;Choi, Sock-Hwan;Kim, Seung-Eon
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.218-224
    • /
    • 2006
  • RF sputtering process was applied to produce thin hydroxyapatite(HAp) films on Ti-6Al-4V alloy substrates. The effects of different heat treatment conditions on the hardness between HAp thin films and Ti-6Al-4V alloy substrates were studied. Before deposition, the Ti-6Al-4V alloy substrates were heat treated for 1h at $850^{\circ}C\;under\;3.0{\times}10^{-3}torr$, and after deposition, the HAp thin films were heat treated for 1h at $400^{\circ}C,\;600^{\circ}C\;and\;800^{\circ}C$ under the atmosphere, and analyzed FESEM-EDX, FTIR, XRD, nano-indentor, micro-vickers hardness, respectively. Experimental results represented that the surface defects of thin films decreased by relaxation of internal stress and control of substrate structure followed by heat treatment of substrates before the deposition, and the HAp thin films on the heat-treated substrates had higher hardness than none heattreated substrates before the deposition, and the hardness properties of HAp thin films and Ti-6Al-4V alloy substrates appeared independent behavior, and the hardness of HAp thin films decreased by formation of $VTiO_3(OH),\;{\theta}-Al_{0.32}V_2O_5,\;Al_{0.33}V_2O_5$.

APPLICATIN OF $CF_4$ PLASMA ETCHING TO $Ta_{0.5}Al_{0.5}$ ALLOY THIN FILM

  • Shin, Seung-Ho;Na, Kyung-Won;Kim, Seong-Jin;Chung, Yong-Sun;Auh, Keun-Ho
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.09a
    • /
    • pp.85-90
    • /
    • 1998
  • Reactive ion etching (RIE) of Ta-Al alloy thin film and SiO2 thin films was observed during the etching with the CF4 gas and the could be used effectively to etch the Ta-Al alloy thin film. The etching rate of the thin film at a Ta content of 50 mol% was about 67$\AA$/min. No selectivity between the Ta-Al alloy thin film and SiO2 thin films was observed during the etching with the CF4 gas and the etching rate of the SiO2 layer was 12 times faster than that of the Ta-Al alloy thin film. In addition, it was observed that photoresist of AZ5214 was more useful than Shiepley 1400-2 in RIE with the CF4 gas.

  • PDF

Electroless Plating of Co-Alloy Thin Films using Alkali-Free Chemicals (Alkali 물질이 포함되지 않은 화학물질을 이용한 Co 합금박막의 무전해도금)

  • Kim, Tae Ho;Yun, Hyeong Jin;Kim, Chang-Koo
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.633-637
    • /
    • 2007
  • Electroless plating of Co-alloy thin films as capping layers for Cu interconnection has been investigated using alkali-free precursors such as $(NH_4)_2Co(SO_4)_2{\cdot}6H_2O$, $(NH_4)_2WO_4$, $(NH_4)H_2PO_4$, etc. The characteristics of the Co-alloy thin films were discussed by analyses of the effects of pH, Co-precursor concentration, and deposition temperature on the thickness and surface morphology of the films. The thickness of the Co-alloy thin films increased with increasing pH, Co-precursor concentration, and deposition temperature, similarly to the results of electroless plating of Co-alloy thin films using alkali-containing chemicals. The SEM images of the surface of the Co-alloy thin films showed that the proper ranges of pH and deposition temperature were 8.5~9.5 and $75{\sim}85^{\circ}C$, respectively. This work found a feasibility that Co-alloy thin films as capping layers for Cu interconnection could be electroless plated using alkali-free chemicals.

A Study on the Electrodeposition of NiFe Alloy Thin Films Using Chronocoulometry and Electrochemical Quartz Crystal Microgravimetry

  • Myeong, No Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.994-998
    • /
    • 2001
  • Ni, Fe and NiFe alloy thin films were electrodeposited at a polycrystalline Au surface using a range of electrolytes and potentials. Coulometry and EQCM were used for real-time monitoring of electroplating efficiency of the Ni and Fe. The plating efficiency of NiFe alloy thin films was computed with the aid of ICP spectrometry. In general, plating efficiency increased to a steady value with deposition time. Plating efficiency of Fe was lower than that of Ni at -0.85 and -1.0 V but the efficiency approached to the similar plateau value to that of Ni at more negative potentials. The films with higher content of Fe showed different stripping behavior from the ones with higher content of Ni. Finally, compositional data and real-time plating efficiency are presented for films electrodeposited using a range of electrolytes and potentials.

Properties Analysis of Zn-Mg Alloy Thin Films Prepared by Plasma Enhanced PVD Method (Plasma-PVD법에 의해 제작한 Zn-Mg합금 박막의 특성 분석)

  • Lee, K.H.;Bae, I.Y.;Kim, Y.J.;Moon, K.M.;Lee, M.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.194-195
    • /
    • 2005
  • (100-x)Zn xMg alloy films are prepared onto cold-rolled steel substrates; where x ranged from 0 to about 38 atomic %. The alloy films show microcrystalline and grain structures respectively, according to preparation conditions such as composition ratio of zinc and magnesium or gas pressures etc.. And X-ray diffraction analysis indicates not only the presence of Zn-Mg thin films with forced solid solution but also the one of $MgZn_2$ alloy films partly. In addition the influence of Mg/Zn composition ratio and morphology of the Zn-Mg alloy films on corrosion behavior is evaluated by electro-chemical anodic polarization tests in deaerated 3% NaCl solution. From this experimental results, all the prepared Zn-Mg alloy films showed obviously good corrosion resistance to compare with 99.99% Zn and 99.99% Mg Ingots for evaporation metal. It is thought that the Zn-Mg films with effective forced solid solution prepared by plasma enhanced PVD method, produces smaller and denser grain structure so that may improve the formation of homogeneous passive layer in corrosion environment.

  • PDF