• 제목/요약/키워드: alloy superconductor tape

검색결과 8건 처리시간 0.021초

고온초전도 선재 제작에 관한 연구 (A Study on fabrication of Bi-2223 HTSC Tapes)

  • 홍세은;두호익;김병숙;임성우;이종배;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.235-238
    • /
    • 2000
  • There have been a lot of studies to improve the characteristic of Bi-2223 tape by PIT method which is considered as one of the best way for applying superconductor. These improved characteristic of Bi-2223 tape is able to be acqured by control of mechanical deformation and heat treatment. In this work, we studied HTS tapes with the sheath(Ag and Ag-alloy)of tapes that affect mechenical strength and critical current, with each two kind of purity(99.9% and 99.999%) and with two kind of tapes(single and double concentric). These charateristics affect Jc of tapes seriously that is the most important factor of superconductor tapes.

  • PDF

피복합금을 사용한 Bi-2223 선재의 열전도도 및 전기전도도 특성평가 (Effects of Ag-alloy sheath on thermal/electrical conductivity of Bi-2223 superconductor tapes)

  • 장석헌;지봉기;임준형;주진호;나완수
    • Progress in Superconductivity
    • /
    • 제4권2호
    • /
    • pp.180-183
    • /
    • 2003
  • We evaluated the effect of alloying-element additions to Ag sheath on thermal conductivity of Bi-2223 superconductor tapes. In order to evaluate the effect of sheath alloys and their configuration on the properties of tape, various combinations of Ag and Ag alloys were selected as inner and outer sheath. Thermal conductivity of the tapes was measured by using thermal integral method at 10∼120 K. It is observed that the presence of alloying-elements such as Mg, Sb, and Au in Ag sheath results in decreased thermal conductivity at low temperature. Specifically, the thermal conductivity of AgMg, AgSb, and AgAu at 40 K were 411.4, 142.3, and 109.7 W/(m·K), respectively, which is about 2∼9 times lower than that of Ag (1004.6 W/(m·K)). In addition, the thermal conductivity of alloy-sheathed tape was significantly dependent on their values of constituent sheath materials.

  • PDF

합금원소 첨가에 따른 Ag 피복 Bi-2223 초전도 선재의 열전도도 측정 및 특성평가 (The Effects of Alloying-Element Additions to Ag Sheath on Thermal Conductivity and Properties of Bi-2223 Superconductor Tapes)

  • 주진호;장석헌;김정호;임준형;김규태;지봉기
    • 한국전기전자재료학회논문지
    • /
    • 제16권7호
    • /
    • pp.627-633
    • /
    • 2003
  • The effects of alloying-element additions to Ag sheath on thermal conductivity and mechanical properties of Bi-2223 superconductor tapes have been evaluated. In order to evaluate the effects of sheath alloys and their configuration on the properties of tape, various combinations of Ag and Ag alloys were selected as the inner and outer sheath. Thermal conductivity of the tapes was evaluated by using thermal integral method at 10 ∼120 K. It was observed that the addition of Mg, Sb, and Au to Ag sheath significantly decreased the thermal conductivity at low temperature probably due to the alloying effect. Specifically, the thermal conductivity of AgMg, AgSb, and AgAu at 40 K were 411.4, 142.3, and 109.7 W/(m·K), respectly, which is about 2∼9 times lower than that of Ag (1004.6 W/(m·K)). In addition, the thermal conductivity of alloy-sheathed tape was significantly dependent on their thermal conductivities of constituent sheath materials. The mechanical properties of alloy-sheathed tapes were also evaluated. Yield strength and tensile strength were improved but workability decreased for alloy-sheathed tapes.

고온초전도 선재용 피복합금의 열전도도 측정 및 특성평가 (Thermal conductivity and properties of sheath alloy for High-$T_c$ superconductor tape)

  • 박형상;지봉기;김중석;임준형;오승진;오승진;주진호;나완수;유재무
    • 한국전기전자재료학회논문지
    • /
    • 제13권8호
    • /
    • pp.711-717
    • /
    • 2000
  • Effect of alloying element additions to Ag on thermal conductivity electrical conductivity and mechanical properties of sheath materials for BSCCO tapes has been characterized. The thermal conductivity at low temperature range(10~300K) of Ag alloys were evaluated by both direct and indirect measurement techniques and compared with each other. It was observed that thermal conductivity decreased with increasing the content of alloying elements such as Au, Pd and Mg. Thermal conductivity of pure Ag at 30 K was measured to be 994.0 W/m.K on the other hand the corresponding values of A $g_{0.9995}$/M $g_{0.0005}$, A $g_{0.974}$/A $u_{0.025}$/M $g_{0.001}$, A $g_{0.973}$/Au.0.025//M $g_{0.002}$, and A $g_{0.92}$/P $d_{0.06}$/M $g_{0.02}$ were 342.6, 62.1, 59.2, 28.9 W/m.K respectively indicating 3 to 30 times lower than that of pure Ag. In addition alloying element additions to Ag improved mechanical strength while reduced elongation probably due to the strengthening mechanisms by the presence of additive atoms.s.

  • PDF

기지금속을 달리한 Bi-2223 초전도 선에서의 기계적 특성 변화 (Mechanical properties at Bi-2223 HTS tapes with various sheath materials)

  • 하동우;이동훈;양주생;김상철;황선역;하홍수;오상수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.551-554
    • /
    • 2004
  • Bi-2223 HTS tapes are used widely for application of superconducting power systems. However there are need the properties of high strength and low AC loss. Two kinds of Bi-2223 HTS tapes with different Ag sheath were used to know the effect of sheath alloying for the strength and the resistivity. The workability and reaction degree of superconducting phase at Bi-2223 HTS tapes were investigated. We designed conventional type-Ag/alloy and double sheathed mono filament type-Ag/alloy/alloy in order to increase the strength and resistivity of matrix in Bi-2223 HTS tapes. The effect of axial strain and thermal cycling on the critical current was investigated for the Bi-2223 HTS tapes. Because the workability of double sheath Bi-2223 HTS tape was lower than one sheath Bi-2223 HTS tape, it was need additional softening treatment. Bi-2223 formation reaction was decreased by Ag alloy matrix during sintering process. Two kinds of Bi-2223/Ag tapes with different Ag sheath were used to know the effect of sheath alloying for the tensile strain. Critical current is drastically decreased for Ag/alloy and Ag/alloy/alloy sheathed tapes at tensile strain above 0.24 % and 0.34 %, respectively. This result showed that mechanical strength was increased over than 40 % by introduce double sheath at mono filament stage.

  • PDF

Low Temperature Thermal Conductivity of Sheath Alloys for High $T_{c}$ Superconductor Tape

  • Park, Hyung-Sang;Oh, Seung-Jin;Jinho Joo;Jaimoo Yoo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제1권2호
    • /
    • pp.32-37
    • /
    • 2000
  • Effect of alloying element additions to Ag on thermal conductivity and electrical conductivity of sheath materials for Bi-Pb-Sr-Ca-Cu-O(BSCCO) tapes has been characterized. The thermal conductivity at low temperature range (10~300K) of Ag and Ag alloys were evaluated by both direct and indirect measurement techniqueas and compared with each other, It was observed that the thermal conductivity decreases with increasing the content of alloying element such as Au, Pd and Mg. Thermal conductivity of pure Ag at 3 0K was measured to be 994.0 W(m.K) on the other hand, the corresponding values of $Ag_{0.9995}Mg_{0.0005}$, $Ag_{0.974}$, $Au_{0.025}$, $Mg_{0.001}$, $Ab_{0.973}$, $Au_{0.025}$, $Mg_{0.002}$ and $Ag_{0.92}$, $Pb_{0.06}$, $Mg_{0.02}$ were 342.6, 62.1, 59.2 and 28.9 W(m.K), respectively, indicating 3 to 30 times lower than that of pure Ag. In addition, the thermal conductivity of pure Ag measured by direct and indirect measurement techniques was 303.2 and 363.8 W(m.K) The difference in this study is considered to be within an acceptable error range compared to the reference data.

  • PDF

Mechanical and Thermal Properties of Ag sheath alloys for Bi-2223 superconductor tape

  • Kim, Tae-Woo;Joo, Jin-Ho;Nah, Wan-Soo;Yoo, Jai-Moo;Ko, Jae-Woong;Kim, Hai-Doo;Chung, Hyung-Sik;Lee, Sang-Hyun
    • Progress in Superconductivity
    • /
    • 제1권1호
    • /
    • pp.61-67
    • /
    • 1999
  • We evaluated the effect of alloying element additions to Ag sheath on mechanical, electrical and thermal properties of Bi-2223. Additions of Au, Pd and Mg to Ag sheath increased hardness and strength, while reduced elongation and electrical and thermal conductivity. In addition, microstructural investigation showed that the grain size of Ag significantly decreased with increasing content of alloying elements. The improvements in strength and hardness are believed to be due to the presence of alloying elements that lead to strengthen materials by combined effects of solid-solution, dispersion hardening and grain size hardening. Thermal conductivity of Ag and Ag alloys was evaluated in the temperature range from 77 K to 300 K, and com-pared to calculated value obtained by Wiedermann-Franz law. It was observed that the thermal conductivity decreased with increasing the content of alloying elements. Specifically, the thermal conductivity of $Ag_{0.92}Pd_{0.06}Mg_{0.02}$ alloy was measured to be $48.2W/(m{\cdot}K)$ at 77 K, which is about 6 times lower than that of $Ag(302.6W/(m{\cdot}K))$.

  • PDF