• Title/Summary/Keyword: alloy powder

Search Result 1,078, Processing Time 0.034 seconds

Microstructure and Mechanical Properties of Co-Cr-Mo alloy for CAD/CAM Applications fabricated by Powder Metallurgy Process (분말야금공법으로 제조된 CAD/CAM용 Co-Cr-Mo 합금의 미세조직 및 기계적 특성)

  • Cha, Sung-Soo
    • Journal of Technologic Dentistry
    • /
    • v.37 no.4
    • /
    • pp.235-242
    • /
    • 2015
  • Purpose: The aims of this study are compare with microstructure and mechanical properties of Co-Cr-Mo alloys fabricated by powder metallurgy(P/M) process and casting process respectively. Methods: Microstructure and micro-hardness were tested by SEM and Vickers Hardness Tester. The sintered specimen was produced by furnace-coolling after sintering, however the casting specimen were produced thru air-cooling and water-cooling after the casting. For observation of phase transformation during sintering, DSC analyzing was carried out. Results: Mean pore size of sintered Co-Cr-Mo alloy was $4.32{\mu}m$ and that of casting alloy was $1.63{\mu}m$. Hardness of sintered alloy was lower than water-quenched casting alloy. Conclusion: Proper sintering temperature of Co-Cr-Mo alloy was above $1,200^{\circ}C$ and pore size of casting specimen were finer than sintered specimen, but hardness were similar.

Fabrication of Porous Nano Particles from Al-Cu Alloy Nano Powders Prepared by Electrical Wire Explosion (전기선 폭발법으로 제조된 Al-Cu 합금 나노분말을 이용한 다공성 나노 입자 제조)

  • Park, Je-Shin;Kim, Won-Baek;Suh, Chang-Youl;Ahn, Jong-Gwan;Kim, Byoung-Kyu
    • Journal of Powder Materials
    • /
    • v.15 no.3
    • /
    • pp.234-238
    • /
    • 2008
  • Al-Cu alloy nano powders have been produced by the electrical explosion of Cu-plated Al wire. The porous nano particles were prepared by leaching for Al-Cu alloy nano powders in 40wt% NaOH aqueous solution. The surface area of leached powder for 5 hours was 4 times larger than that of original alloy nano powder. It is demonstrated that porous nano particles could be obtained by selective leaching of alloy nano powder. It is expected that porous Cu nano powders can be applied for catalyst of SRM (steam reforming methanol).

The Effects of TiC Content on Microstructure of Modified A6013-3wt.%Si Alloy Powder Compact (TiC 첨가량에 따른 개량된 A6013-3wt.%Si 합금 분말성형체의 미세조직 변화)

  • Yoo, Hyo-Sang;Kim, Yong-Ho;Son, Hyeon-Taek
    • Journal of Powder Materials
    • /
    • v.29 no.1
    • /
    • pp.28-33
    • /
    • 2022
  • Aluminum-based powders have attracted attention as key materials for 3D printing owing to their low density, high specific strength, high corrosion resistance, and formability. This study describes the effects of TiC addition on the microstructure of the A6013 alloy. The alloy powder was successfully prepared by gas atomization and further densified using an extrusion process. We have carried out energy dispersive X-ray spectrometry (EDS) and electron backscatter diffraction (EBSD) using scanning electron microscopy (SEM) in order to investigate the effect of TiC addition on the microstructure and texture evolution of the A6013 alloy. The atomized A6013-xTiC alloy powder is fine and spherical, with an initial powder size distribution of approximately 73 ㎛ which decreases to 12.5, 13.9, 10.8, and 10.0 ㎛ with increments in the amount of TiC.

Transient-Liquid-Phase Bonding of Fe-Base MA956 ODS Alloy (Fe기 MA956 산화물분산강화합금의 천이액상확산접합에 관한 연구)

  • 강지훈
    • Journal of Powder Materials
    • /
    • v.2 no.1
    • /
    • pp.53-62
    • /
    • 1995
  • TLP(Transient-Liquid-Phase) bonding of Fe-base MA956 ODS alloy was performed. As insert metal a commercially available Ni-base alloy(MBF50) and an MA956 alloy with additive elements of 7wt% Si and 1wt% B were used. To confirm the idea that a concurrent use of MA956 powder with Insert metals can enhance the homogenization of constituent elements and thereby reduce the thickness of joint interface, MA956 powder was also inserted In a form of sheet. SEM observation and EDS analysis revealed that Cr-rich phase was formed in the bonded interface in initial stage of isothermal solidification during the bonding process, irrespective of kind of insert metals. Measurement of hardeness in the region of bonded interface and EDS analysis showed that a complete homogenization of composition could not be obtained especially in case of MBF50. Joints using either BSi insert metals only or BSi insert together with MA956 powder interlayer showed, however, a remarkable improvement in a compositional homogenization, even though a rapid grain growth in the bonded interface could not be hindered.

  • PDF

The Effect of Mn on Microstructural Change in 93W-5.6Ni-1.4Fe Heavy Alloy (텅스텐 중합금에 Mn 첨가에 따른 미세조직)

  • 김은표
    • Journal of Powder Materials
    • /
    • v.5 no.1
    • /
    • pp.35-41
    • /
    • 1998
  • The effect of Mn on the densification and the microstructural change in W heavy alley was investigated with adopting the improved Mn-adding method. In order to avoid the pore formation problems associated with Mn powder mixing to the other constituent powders, Mn was added afterwards to the sintered heavy alloy; Mn powder was spread homogeneously on the surface of the sintered heavy alloy compact, and this Mn powder contained specimen was resintered at the same sintering temperature. As expected, the resintered specimen showed the pore free microstructure because Mn was reduced separately from the other constituent elements. It was also founded that W grains grew rapidly at the initial stage of resintering treatment due to the activated reprecipitation of the excess W atoms substituted by Mn atoms, but the growth rate of W grains was slowly lowered with the prolonged sintering time, especially, compared to the Mn free heavy alloy. Such a retardation of grain growth should be attributed to the decreased W solubility in the Mn contented matrix phase. Furthermore, Mn addition resulted in the decrease of contiguity by improving the wetting between matrix phase and W grain.

  • PDF

Effect of C/Ti Atomic Ratio of TiCx Raw Powder on the Properties of Ti-Mo-W-TiC Sintered Hard Alloy

  • Nakahara, Kenji;Sakaguchi, Shigeya
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.109-110
    • /
    • 2006
  • We have studied the effect of C/Ti atomic ratio of TiCx (x=0.5, 0.75 and 1.0) raw powder on the properties of the Ti-Mo-WTiC sintered hard alloy. The decrease of C/Ti atomic ratio accelerated the densification in the sintering process. The hardness was remarkably improved up to 1350HV with decreasing the C/Ti atomic ratio because of increase of TiCx phase volume content and its fine dispersion. From the results of electro-chemical tests in acid and 3% NaCl solutions, it was obvious that every alloy had excellent corrosion resistance, which meant about 200 times better than that of WC-Co cemented carbide.

  • PDF

Volume Expansion of TiMn2-type Hydrogen Storage Alloy with Hydrogenation (TiMn2계 수소저장합금의 수소화에 따른 부피팽창)

  • PARK, CHOONG-NYEON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.5
    • /
    • pp.459-464
    • /
    • 2017
  • The volume expansions of $Ti_{0.95}Zr_{0.05}V_{0.4}Mn_{1.45}Fe_{0.1}Cr_{0.05}$ alloy during hydrogenation with various conditions have been investigated. The theoretical volume expansion measured with XRD for this alloy with hydrogenation was 21%. The apparent volume expansion of this alloy ingot with hydrogenation was composed of two effects. One is a hydrogenation and the other is a pulverization. The apparent volume of free alloy powder was 1.8 times greater than that of an ingot, implying the pulverization effect on the apparent volume expansion is 80%. The apparent volume expansion of the alloy ingot with hydrogenation under a unconstrained condition was about 80 (${\pm}15$)%, much smaller than that of free alloy powder which expected as 118%. In addition, The apparent volume expansion of the alloy ingot with hydrogenation under a constrained condition(Al container) was about 50%, much smaller than that of the unconsrained. This reduced apparent volume expansion of the alloy ingot could be attributed to an arrangement of alloy powder keeping its original shape of the ingot even after hydrogenation.

A Study on the Fabrication of Fe Based Alloy Powder for Laser Welding (레이저 용접용 Fe계 합금 분말 제조에 관한 연구)

  • Lee, Jong-Jae;Son, Young-San
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3315-3318
    • /
    • 2012
  • In this study, Fe-base alloy powder was prepared by gas atomizing method. Shape and crystal structure of the powder were investigated by FESEM, X-ray diffraction, and DSC. The powder was produced in a spherical shape, with a size of 45 ~ 90 ${\mu}m$. X-ray diffraction analysis revealed that the powder was fully amorphous, showing typical broad amorphous peak. From DSC analysis, Tg and Tx that are generally found in a bulk amorphous alloy were also observed in the alloy powder. Tg and Tx of the powder were $530^{\circ}C$ and $560^{\circ}C$, respectively. These results suggest us that the bulk amorphous alloy (BMG) powder prepared in this study is applicable to laser welding.

Charge and Discharge Characteristics of Microencapsulated Hydrogen Storage Alloy Electrodes for Secondary Batteries (마이크로캡슐화한 축전지용 수소저장합금 전극의 충·방전 특성)

  • CHOI, Seong-Soo;CHOI, Byung-Jin;YE, Byung-Joon;KIM, Dai-Ryong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.3 no.2
    • /
    • pp.45-54
    • /
    • 1992
  • An applicability microencapsulation, using electroless copper plating, of hydrogen storage alloy powder as an anode material for nickel-hydrogen secondary batteries was investigated. Alloys employed were $LaNi_{4.7}Al_{0.3}$ and $MmNi_{4.5}Al_{0.5}$(Mm=mischmetal) which have an appropriate equilibrium pressure and capacity. The microencapsulation of the alloy powder was found to accelerate initial activation of electrodes and to increase capacity which is about 285mAh/g for $LaNi_{4.7}Al_{0.3}$. In addition, other charge and discharge characteristics, such as polarization and flatness of charge and discharge potential, were improved due to the role of copper layer as a microcurrent collector and an oxidation barrier of the alloy powder. $MmNi_{4.5}Al_{0.5}$ alloy showed lower capacity than $LaNi_{4.7}Al_{0.3}$ because of higher equilibrium pressure. Cyclic characteristics of both alloys were somewhat poor because of mainly shedding and partial oxidation of alloy powder during the cycling. However, it was considered that the microencapsulation method is effective to improve the performances of the hydrogen storage alloy electrodes.

  • PDF

Sintering Behavior of 2xxx Series Al alloys with Variation of Sintering Temperature (2xxx Al 합금계 혼합분말의 소결온도에 따른 소결거동)

  • 민경호;김대건;장시영;임태환;김영도
    • Journal of Powder Materials
    • /
    • v.10 no.1
    • /
    • pp.40-45
    • /
    • 2003
  • Sintering behavior of 2xxx series Al alloy was investigated to obtain full densification and sound microstructure. The commercial 2xxx series Al alloy powder. AMB2712, was used as a starting powder. The mixing powder was characterized by using particle size analyzer, SEM and XRD. The optimum compacting pressure was 200 MPa, which was the starting point of the "homogeneous deformation" stage. The powder compacts were sintered at $550~630^{\circ}C$ after burn-off process at $400^{\circ}C$. Swelling phenomenon caused by transient liquid phase sintering was observed below $590^{\circ}C$ of sintering temperature. At $610^{\circ}C$, sintering density was increased by effect of remained liquid phase. Further densification was not observed above $610^{\circ}C$. Therefore, it was determined that the optimum sintering temperature of AMB2712 powder was $610^{\circ}C$.}C$.