• 제목/요약/키워드: alloy 42

검색결과 218건 처리시간 0.034초

Evaluation of marginal and internal gap of three-unit metal framework according to subtractive manufacturing and additive manufacturing of CAD/CAM systems

  • Kim, Dong-Yeon;Kim, Eo-Bin;Kim, Hae-Young;Kim, Ji-Hwan;Kim, Woong-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권6호
    • /
    • pp.463-469
    • /
    • 2017
  • PURPOSE. To evaluate the fit of a three-unit metal framework of fixed dental prostheses made by subtractive and additive manufacturing. MATERIALS AND METHODS. One master model of metal was fabricated. Twenty silicone impressions were made on the master die, working die of 10 poured with Type 4 stone, and working die of 10 made of scannable stone. Ten three-unit wax frameworks were fabricated by wax-up from Type IV working die. Stereolithography files of 10 three-unit frameworks were obtained using a model scanner and three-dimensional design software on a scannable working die. The three-unit wax framework was fabricated using subtractive manufacturing (SM) by applying the prepared stereolithography file, and the resin framework was fabricated by additive manufacturing (AM); both used metal alloy castings for metal frameworks. Marginal and internal gap were measured using silicone replica technique and digital microscope. Measurement data were analyzed by Kruskal-Wallis H test and Mann-Whitney U-test (${\alpha}=.05$). RESULTS. The lowest and highest gaps between premolar and molar margins were in the SM group and the AM group, respectively. There was a statistically significant difference in the marginal gap among the 3 groups (P<.001). In the marginal area where pontic was present, the largest gap was $149.39{\pm}42.30{\mu}m$ in the AM group, and the lowest gap was $24.40{\pm}11.92{\mu}m$ in the SM group. CONCLUSION. Three-unit metal frameworks made by subtractive manufacturing are clinically applicable. However, additive manufacturing requires more research to be applied clinically.

높은 차단용량 특성을 갖는 초소형 미니어처 퓨즈의 가용체 설계 (Design for a Fuse Element of Sub-miniature Fuse with High Breaking Capacity Characteristics)

  • 안창환
    • 전자공학회논문지
    • /
    • 제54권3호
    • /
    • pp.131-137
    • /
    • 2017
  • 네트워크 기반의 휴대용 전자 제품의 시장 성장으로 전기기기들은 더욱 소형화 되고 있는 추세이고 내부 부품간의 거리가 가까워져 회로 단락의 위험이 높아지고 있다. 회로의 단락 상황에서 유입되는 높은 과전류로 부터 폭발이나 화재 없이 전자기기를 안전하게 보호하기 위해서는 차단용량이 높은 밀폐형 카트리지 퓨즈를 적용해야 하지만 제품의 소형화 추세에 따른 공간의 문제로 해당 퓨즈의 적용이 불가능한 실정이다. 이를 해결하기 위해서 화학적 결합으로 퓨즈 가용체를 보호하는 밀폐형 퓨즈보다 공기의 유입이 자유로울 뿐만 아니라 물리적 결합으로 퓨즈링크를 보호하는 반밀폐형 초소형 퓨즈가 적용되는 것이 적합하지만 높은 차단용량 특성을 구현하는데 한계가 있다. 이에 본 논문에서는 상대적으로 공간을 적게 차지하면서 높은 차단용량을 갖는 반밀폐형 초소형 퓨즈를 위한 퓨즈 가용체 합금과 퓨즈링크의 설계 기술을 통하여 회로의 단락 상황에서 안전성을 확보하였다.

AlSl 420F 스테인리스강의 Creep 거동 (A Study on the Creep Behavior of AlSl 420F Stainless Steel)

  • 박용권;윤병주;최재하
    • 열처리공학회지
    • /
    • 제13권6호
    • /
    • pp.383-390
    • /
    • 2000
  • The static creep behaviour of AlSl 420F stainless steel was investigated over the temperature range of $540{\sim}585^{\circ}C$ and the stress range of $13{\sim}19kg/mm^2$ (127.4~186.2MPa). Constant stress creep tests were carried out in the experiment. Measured stress exponent, n, for the creep deformation of the alloy under the given conditions was found to vary at the range of 9.59, 9.15, 8.78, and 8.53 for the temperature of 540, 555, 570, and $585^{\circ}C$ respectively. The activation energy, Qc, for the creep deformation was 106.42, 102.58,97.81, and 94.58 kcal/mole for the stress of 13, 15, 17, and $19kg/mm^2$, respectively. Lason-Miller parameter, P, for the crept specimens for AlSl 420F stainless steel was measured as $P=T(log\;t_T+21)$. The empirical static creep rate obtained by the regression analysis was as follows. $${\varepsilon}={\exp}[(3.79{\times}10^{-2}{\sigma}+2.722)T-3.0747{\sigma}+28.109]{\times}{\sigma}^{(-2.367{\times}10^{-2}T+22.33)}{\exp}\left[-\frac{(-2.015{\sigma}+132.580){\times}10^3}{RT}\right]$$ The failure plane were observed, intergranular fracture was dominated by r (round) type crack over the experimental range.

  • PDF

분산강화 동합금의 Creep 특성 (The Characteristics of Creep for Dispersion Strengthened Copper)

  • 박규철;김경환;문준영;최재하
    • 열처리공학회지
    • /
    • 제14권4호
    • /
    • pp.220-227
    • /
    • 2001
  • The static creep behaviors of dispersion strengthened copper GlidCop were investigated over the temperature range of $650{\sim}690^{\circ}C$ (0.7Tm) and the stress range of 40~55 MPa (4.077~5.61 $kg/mm^2$). The stress exponents for the static creep deformation of this alloy was 8.42, 9.01, 9.25, 9.66 at the temperature of 690, 677, 663, and $650^{\circ}C$, respectively. The stress exponent, (n) increased with decreasing the temperature and became dose to 10. The apparent activation energy for the static creep deformation, (Q) was 374.79, 368.06, 361.83, and 357.61 kg/mole for the stress of 40, 45, 50, and 55 MPa, respectively. The activation energy (Q) decreased with increasing the stress and was higher than that of self diffusion of Cu in the dispersion strengthened copper. In results, it can be concluded that the static creep deformation for dispersion strengthened copper was controlled by the dislocation climb over the ranges of the experimental conditions. Larson-Miller parameter (P) for the crept specimens for dispersion strengthened copper under the static creep conditions was obtained as P=(T+460)(logtr+23). The failure plane observed for SEM slightly showed up transgranular at that experimental range, however, universally it was dominated by characteristic of the intergranular fracture.

  • PDF

Comparison of effect of desensitizing agents on the retention of crowns cemented with luting agents: an in vitro study

  • Jalandar, Sonune Shital;Pandharinath, Dange Shankar;Arun, Khalikar;Smita, Vaidya
    • The Journal of Advanced Prosthodontics
    • /
    • 제4권3호
    • /
    • pp.127-133
    • /
    • 2012
  • PURPOSE. Many dentists use desensitizing agents to prevent hypersensitivity. This study compared and evaluated the effect of two desensitizing agents on the retention of cast crowns when cemented with various luting agents. MATERIALS AND METHODS. Ninety freshly extracted human molars were prepared with flat occlusal surface, 6 degree taper and approximately 4 mm axial length. The prepared specimens were divided into 3 groups and each group is further divided into 3 subgroups. Desensitizing agents used were GC Tooth Mousse and $GLUMA^{(R)}$ desensitizer. Cementing agents used were zinc phosphate, glass ionomer and resin modified glass ionomer cement. Individual crowns with loop were made from base metal alloy. Desensitizing agents were applied before cementation of crowns except for control group. Under tensional force the crowns were removed using an automated universal testing machine. Statistical analysis included one-way ANOVA followed by Turkey-Kramer post hoc test at a preset alpha of 0.05. RESULTS. Resin modified glass ionomer cement exhibited the highest retentive strength and all dentin treatments resulted in significantly different retentive values (In Kg.): GLUMA ($49.02{\pm}3.32$) > Control ($48.61{\pm}3.54$) > Tooth mousse ($48.34{\pm}2.94$). Retentive strength for glass ionomer cement were GLUMA ($41.14{\pm}2.42$) > Tooth mousse ($40.32{\pm}3.89$) > Control ($39.09{\pm}2.80$). For zinc phosphate cement the retentive strength were lowest GLUMA ($27.92{\pm}3.20$) > Control ($27.69{\pm}3.39$) > Tooth mousse ($25.27{\pm}4.60$). CONCLUSION. The use of $GLUMA^{(R)}$ desensitizer has no effect on crown retention. GC Tooth Mousse does not affect the retentive ability of glass ionomer and resin modified glass ionomer cement, but it decreases the retentive ability of zinc phosphate cement.

생체용 순수 Ti 주조체의 냉각방법에 따른 주조조직과 부식특성 및 경도에 관한 연구 (A study on microstructure, corrosion characteries and hardness of pure Ti according to cooling methods)

  • 김재도
    • 대한치과기공학회지
    • /
    • 제23권1호
    • /
    • pp.65-73
    • /
    • 2001
  • The purpose of this study was to investigate the microstucture and hardness, corrosion of pure Ti alloy, which is widely used as partial denture frame work these days, depending on the cooling method, followed by casting. The first group was bench cooling at room temperature($18^{\circ}C$), the second group was slowly cooled in the furnace from $700^{\circ}C$ to room temperature, and third. rapidly cooled in $0^{\circ}C$ water. The microstructure of each specimen observed by means of photomicrograph taken by electron microscope, in add to the physical characteristics of each specimen were obtained using the rockwell Hardnest Number. the characteristics of corrosion. The results were obtained as follows: 1. From Potentiodynamic plot. we conclude furnace-cooled specimen had the best stabiltity of passive film and that air-cooled specimen showed similar characteristics. The density of electric current of quenched specimen was the highest, which formed kind of unstable passive film. 2. Specimen cooled at room temperature (air cooling) had the highest value of hardness of 81.26HRB, specimen cooled at ice-water, $0^{\circ}C$, had the value of 78.42HRB, and specimen furnace-cooled at $700^{\circ}C$ had lowest value of 77.1HRB. 3. Quenching treated micro-structure formed martensite structure by and large. In case of air cooling, we could see $\alpha$-structure widmanstatten formed overall. In furnace cooling, widmanstatten structure and various shape $\alpha$-structures forming colony with direction were detected.

  • PDF

대형주강품에 대한 CAE 시스템 개발 연구 (Development of a Simultaneous CAE System for the Application to Large Steel Castings)

  • 이영철;이두호;김종기;소찬영;최정길;홍준표
    • 한국주조공학회지
    • /
    • 제17권5호
    • /
    • pp.465-471
    • /
    • 1997
  • An integrated computer program consisting of a pre-processor, main solver, and post-processor was developed for the design of large steel castings. The pre-processor, based on the AutoCAD, enables the user to produce approval drawings, casting design drawings and mesh diagrams in sequence using a personal computer. In the main solver, two numerical models were employed; one models the fluid flow during mold filling, and the other models the heat transfer and solidification. The post-processor can be used to present simulation results such as flow pattern, mold filling sequences, solidification times, temperature gradients and location of shrinkage defects by color graphics. In order to validate the applicability of the present integrated program, a series of experiments on simple-shaped steel castings were carried out. After the validation of the present model, it was applied to the casting design of the large steel anchor of an SC42 alloy. Various solidification parameters such as a temperature distribution and a solidification time in the casting and the mold were compared with those obtained experimentally. Simulated results predicting shrinkage defects were in good agreement with those obtained experimentally. It was found that the present method can be successfully applied to the quantitative casting design for complex-shaped large steel castings.

  • PDF

레이저빔에 의한 계면경사 Ni-Cr/steel 재료 제조에 관한 연구 (A study on the Fabrication of Graded-Boundary Ni-Cr/Steel Material by Laser Beam)

  • 김재현;김도훈
    • 한국레이저가공학회지
    • /
    • 제3권1호
    • /
    • pp.29-37
    • /
    • 2000
  • For a development purpose of thick metal / metal Graded-Boundary Materials(GBM), a basic research on the fabrication of Ni-Cr/steel GBM was carried out by a laser beam and its mechanical properties and thermal characteristics were investigated. In order to produce a compositionally graded boundary region between substrate steel and added Ni-Cr alloy, a series of surface alloying treatments was performed with a high power CO$_2$ laser beam. Ni-Cr sheet was placed on a low carbon steel plate(0.18%C), and then a CO$_2$ laser beam was irradiated on the surface to produce a homogeneous alloyed layer. On this first surface-alloyed layer, another Ni-Cr sheet was placed and then the CO$_2$ laser beam was irradiated again to produce second surface-alloyed layer. Sequential repetitions of laser surface alloying treatment 4 times resulted in a graded-boundary region with the thickness of about 1.4mm. Simultaneous concentration profiles of different kinds of alloying elements(Ni and Cr) showed from 42%Ni, 45%Cr and 13%Fe on surface region to 0%Ni, 0%Cr and 99%Fe in substrate region. Also a thermal conductivity gradient resulted in graded-region and its value changed from 0.03㎈/cm s$\^{C}$ in surface region to 0.1㎈/cm s$\^{C}$ in substrate region. Microstructural observation showed that any visible root porosities and solidification shrinkage cracks were not formed in graded region between alloyed layer and substrate region during rapid cooling.

  • PDF

Inclusion and mechanical properties of ODS-RAFM steels with Y, Ti, and Zr fabricated by melting

  • Qiu, Guo-xing;Wei, Xu-li;Bai, Chong;Miao, De-jun;Cao, Lei;Li, Xiao-ming
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2376-2385
    • /
    • 2022
  • Two groups of oxide dispersion-strengthened reduced-activation ferritic/martensitic steels (A and B) were prepared by adding Y, Ti, and Zr into steels through vacuum induction melting to investigate the inclusions, microstructures, mechanical properties of the alloys. Results showed that particles with Y, Ti, and Zr easily formed. Massive, Zr-rich inclusions were found in B steel. Density of micron inclusions in A steel was 1.42 × 1014 m-3, and density of nanoparticles was 3.61 × 1016 m-3. More and finer MX carbides were found in steel tempered at 650 ℃, and yield strengths (YS) of A and B steel were 714±2 and 664±3.5 MPa. Thermomechanical processing (TMP) retained many dislocations, which improved the mechanical properties. YSs of A and B treated by TMP were 725±3 and 683±4 MPa. The existence of massive Zr-rich inclusions in B steels interrupted the continuity of the matrix and produced microcracks (fracture), which caused a reduction in mechanical properties. The presence of fine prior austenite grain size and inclusions was attributed to the low DBTTs of the A steels; DBTTs of A650 and A700 alloy were -79 and -65 ℃. Tempering temperature reduction and TMP are simple, readily useable methods that can lead to a superior balance of strength and impact toughness in industry applications.

전자선치료 시 3D 프린터로 제작한 환자 맞춤형 차폐체의 유용성 평가 (Evaluation of the Usefulness of Patient Customized Shielding Block Made with 3D Printer in the Skin Cancer Electron Beam Therapy)

  • 안기송;정우찬;김대현;김무섭;윤도군;심재구;서태석
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제42권6호
    • /
    • pp.447-454
    • /
    • 2019
  • In order to improve and supplement the shielding method for electron beam treatment, we designed a patient-specific shielding method using a 3D printer, and evaluated the usefulness by comparing and analyzing the distribution of electron beam doses to adjacent organs. In order to treat 5 cm sized superficial tumors around the lens, a CT Simulator was used to scan the Alderson Rando phantom and the DICOM file was converted into an STL file. The converted STL file was used to design a patient-specific shield and mold that matched the body surface contour of the treatment site. The thickness of the shield was 1 cm and 1.5 cm, and the mold was printed using a 3D printer, and the patient customized shielding block (PCSB) was fabricated with a cerrobend alloy with a thickness of 1 cm and 1.5 cm. The dosimetry was performed by attaching an EBT3 film on the surface of the Alderson Rando phantom eyelid and measuring the dose of 6, 9, and 12 MeV electron beams on the film using four shielding methods. Shielding rates were 83.89%, 87.14%, 87.39% at 6, 9, and 12 MeV without shielding, 1 cm (92.04%, 87.48%, 86.49%), 1.5 cm (91.13%, 91.88% with PSCB), 92.66%) The shielding rate was measured as 1 cm (90.7%, 92.23%, 88.08%) and 1.5 cm (88.31%, 90.66%, 91.81%) when the shielding block and the patient-specific shield were used together. PCSB fabrication improves shielding efficiency over conventional shielding methods. Therefore, PSCB may be useful for clinical application.