• Title/Summary/Keyword: allowable load

Search Result 509, Processing Time 0.024 seconds

Experimental Study on Structural Behavior of Precast PSC Curved Girder Bridge (프리캐스트 PSC 곡선 거더교의 구조거동에 대한 실험적 연구)

  • Kim, Sung Jae;Kim, Sung Bae;Uhm, Ki Ha;Kim, Jang Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1731-1741
    • /
    • 2014
  • Recently, many overpasses, highway, and advanced transit systems have been constructed to distribute the traffic congestion, thus small size of curved bridges with small curvature such as ramp structures have been increasing. Many of early curved bridges had been constructed by using straight beams with curved slabs, but curved steel beams have replaced them due to the cost, aesthetic and the advantage in building the section form and manipulating the curvature of beams, thereby large portion of curved bridges were applied with steel box girders. However, steel box girder bridges needs comparatively high initial costs and continuous maintenance such as repainting, which is the one of the reason for increasing the cost. Moreover, I-type steel plate girder which is being studied by many researchers recently, seem to have problems in stability due to the low torsional stiffness, resulting from the section characteristics with thin plate used for web and open section forms. Therefore, in recent studies, researchers have proposed curved precast PSC girders with low cost and could secured safety which could replace the curved steel girder type bridges. Hence, this study developed a Smart Mold system to manufacture efficient curved precast PSC girders. And by using this mold system a 40 m 2-girder bridge was constructed for a static flexural test, to evaluate the safety and performance under ultimate load. At the manufacturing stage, each single girder showed problems in the stability due to the torsional moment, but after the girders were connected by cross beams and decks, the bridge successfully distributed the stress, thereby the stability was confirmed. The static loading test results show that the initial crack was observed at 1,400 kN when the design load was 450 kN, and the load at the allowable deflection by code was 1,800 kN, which shows that the safety and usability of the curved precast PSC bridge manufactured by Smart Mold system is secured.

Characteristics of Pressure Distribution of Journal Bearing according to Lining Material (라이닝 재료에 따른 저널 베어링의 압력 분포 특성)

  • Shin, Sang-Hoon;Rim, Chae Whan;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.480-485
    • /
    • 2017
  • The main reason for the heat induced accidents occurring at the after stern tube journal bearing is the excessive local pressure caused by the deflection of the propulsion shaft due to the propeller loads. It is expected that the contact area could beenlarged and the local pressure reduced accordingly by using a lining material having alow Young's modulus instead of the existing white metal. The purpose of this work is to investigate the characteristics of the pressure distribution and determine the allowable pressure value in the case where bearing products made of materials having a low Young's modulus are used. In this study, the propeller loads, heat effect, and hull deflection are considered in the evaluation of the local pressure of the ship propulsion shaft. Also, the Hertzian contact condition was applied. From the analysis results in the case where a lining material with a low Young's modulus was used, it was found that a robust design could be achieved and the local pressure could be reduced effectively independent of the load conditions. It will be possible to producenew products made of materials having a low Young's modulus if the manufacturer confirms the performance specifications drawn by this study.

A Study on the Stability Analysis of Reinforced Embankment on the Soft Ground (연약지반상의 보강성토의 안정해석에 관한 연구)

  • 임종철;전미옥;박이근;정연인
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.285-296
    • /
    • 1999
  • Preloading method is used to prevent the settling of a foundation and to increase the strength of ground by consolidation settlement in advance. But, the embankment used in preloading method brings large deformation and sliding failure in the soft ground. Recently, reinforcement method is often used in embankment in order to prevent sliding failure. But, until now, the research on the stability analysis considering both the rate of strength increase of clay by embankment load and increase of resistance force by the geosynthetics in the embankment body is not found. In this study, the stability analysis program(REAP) for embankment including these two points is developed. By this program(REAP), the stability analysis can be done about during the gradual increase of embankment and the stability counterplan can be established when the safety factor is lower than allowable safety factor of design. After calculating the position of sliding failure surface, the force of geosynthetics which is selected by either the effective tensile strength or tensile force caused by the displacement of soil mass in this position is applied to stability analysis. And the increase of resisting moment can be calculated by this force. Also, the construction period can be estimated and the time for the appropriate counterplan can be decided in order to maintain the stability of embankment. And then, safe and economical embankment design can be performed.

  • PDF

Increasing Hosting Capacity in KEPCO Distribution Feeders (배전선로의 분산 전원 상시 연계용량 기준 상향 타당성 연구)

  • Cho, Sung-Soo;Sim, JunBo;Lim, Hyeon-Ok;Kim, HyeonJin;Kim, Seong-Man;Ju, Sang-Do;Song, JongHyup
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.311-321
    • /
    • 2019
  • With Korean Government's Renewable energy 3020 plan and 8th Basic plan for long-term power supply, renewable energy industries in Korea are active and catching attention from many relevant industry's relations. Especially with Interconnection guarantee policy established in Oct, 2016, DERs interconnection delay due to lack of allowable distribution hosting capacity is happening and reduction of reinforcement cost for distribution system where 70 % of DERs in South Korea are installed became one of important issues of KEPCO. Therefore, KEPCO needed to extract reasonable solutions to increase feasible hosting capacity of distribution feeders in order to reduce reinforcement cost under the condition of no matter in distribution system operation. This paper proposes feasible hosting capacity of distribution feeders that can be adopted and the status of DER installation in distribution system, PV output data, minimum load in distribution feeders as well as capacity of distribution lines have been investigated and analyzed in proof of the proposal.

Probabilistic Optimization for Improving Soft Marine Ground using a Low Replacement Ratio (해상 연약지반의 저치환율 개량에 대한 확률론적 최적화)

  • Han, Sang-Hyun;Kim, Hong-Yeon;Yea, Geu-Guwen
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.485-495
    • /
    • 2016
  • To reinforce and improve the soft ground under a breakwater while using materials efficiently, the replacement ratio and leaving periods of surcharge load are optimized probabilistically. The results of Bayesian updating of the random variables using prior information decrease uncertainty by up to 39.8%, and using prior information with more samples results in a sharp decrease in uncertainty. Replacement ratios of 15%-40% are analyzed using First Order Reliability Method and Monte Carlo simulation to optimize the replacement ratio. The results show that replacement ratios of 20% and 25% are acceptable at the column jet grouting area and the granular compaction pile area, respectively. Life cycle costs are also compared to optimize the replacement ratios within allowable ranges. The results show that a range of 20%-30% is the most economical during the total life cycle. This means that initial construction cost, maintenance cost and failure loss cost are minimized during total life cycle. Probabilistic analysis for leaving periods of shows that three months acceptable. Design optimization with respect to life cycle cost is important to minimize maintenance costs and retain the performance of the structures for the required period. Therefore, more case studies that consider the maintenance costs of soil structures are necessary to establish relevant design codes.

Safety Evaluation of Radioactive Material Transport Package under Stacking Test Condition (방사성물질 운반용기의 적층시험조건에 대한 안전성 평가)

  • Lee, Ju-Chan;Seo, Ki-Seog;Yoo, Seong-Yeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.37-43
    • /
    • 2012
  • Radioactive waste transport package was developed to transport eight drums of low and intermediate level waste(LILW) in accordance with the IAEA and domestic related regulations. The package is classified with industrial package IP-2. IP-2 package is required to undergo a free drop test and a stacking test. After free drop and stacking tests, it should prevent the loss or dispersal of radioactive contents, and loss of shielding integrity which would result in more than 20 % increase in the radiation level at any external surface of the package. The objective of this study is to establish the safety test method and procedure for stacking test and to prove the structural integrities of the IP-2 package. Stacking test and analysis were performed with a compressive load equal to five times the weight of the package for a period of 24 hours using a full scale model. Strains and displacements were measured at the corner fitting of the package during the stacking test. The measured strains and displacements were compared with the analysis results, and there were good agreements. It is very difficult to measure the deflection at the container base, so the maximum deflection of the container base was calculated by the analysis method. The maximum displacement at the corner fitting and deflection at the container base were less than their allowable values. Dimensions of the test model, thickness of shielding material and bolt torque were measured before and after the stacking test. Throughout the stacking test, it was found that there were no loss or dispersal of radioactive contents and no loss of shielding integrity. Thus, the package was shown to comply with the requirements to maintain structural integrity under the stacking condition.

Development of Vibration Absorption Device for the Transportation-Trailer System (III) - Leaf Spring Suspension Device - (수송 트레일러의 충격흡수장치 개발(III) -평판 스프링 현가장치-)

  • Hong, J.H.;Park, W.Y.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.4
    • /
    • pp.224-229
    • /
    • 2008
  • This study was aimed to minimize the impact force and vibration transmitted to the transporting materials from the trailer and wheel shaft by installing the leaf spring suspension device at the space between the wheel shaft and frame of power tiller trailer. The developed trailer equipped with leaf spring suspension device was compared to the existing trailer without suspension device, in order to identify the vibration absorption effect of the leaf spring. The results of this study could be summarized as follows; (1) The length and the maximum bending amount of the leaf spring were designed as 1,000 mm and 42 mm, respectively, considering the possible space for installing at below the trailer. When 4 leaf springs were installed on both wheel shafts, the allowable maximum load was identified as 9,418 N. (2) The average vibration accelerations for the frequency less than 20 Hz, where the severe transporting loss could be represented, were $0.017\;m/s^2$ and $0.133\;m/s^2$ for the developed and the existing trailer, respectively, showing the vibration absorption effect of about 87%. And the average vibration accelerations on the driver's seat for the frequency less than 20 Hz were $0.01\;m/s^2$ and $0.20\;m/s^2$ for the developed and the existing trailer, respectively, which showed the similar vibration absorption effect. (3) The change of the average vibration accelerations for the frequency from 20 Hz to 80 Hz showed the similar tendency with the result for the frequency less than 20 Hz, but the effect for developed trailer was reduced slightly. And the effect of vibration absorption for the above 80 Hz was reduced highly. However, by installing the leaf spring suspension device at the trailer, the low frequency below 40 Hz, which could affect on transporting loss severely, could be reduced highly. (4) The maximum vibration acceleration for the frequency less than 20 Hz were $0.027\;m/s^2$ and $1.267\;m/s^2$ for the developed and the existing trailer, respectively. And the change of maximum acceleration between 20 Hz and 120 Hz was showed similar tendency with the result for the frequency less than 20 Hz, but the width of change was reduced highly.

LRFD Design and Reliability Level Estimation of a Steel Closed-Box Girder Bridge (폐단면 강박스거더교의 LRFD 설계와 신뢰성수준 평가)

  • Huh, Jung-Won;Yun, Dong-Geon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.217-225
    • /
    • 2010
  • Most of the steel bridges in Korea are being currently designed by the allowable stress design method that uses the conventional deterministic factors of safety. However the limit state design based on the concept of probability, statistics and reliability engineering is becoming very popular as a global standard deign method, leading the rational and economic bridge design. As part of the fundamental research to establish the load and resistance factor design(LRFD) of steel bridges considering domestic environmental conditions and regional characteristics, an experimental design is conducted by applying AASHTO-LRFD specification especially to a steel closed-box girder, which occupies relatively a large portion of steel bridges in Korea. Throughout the experimental design according to various sectional changes, some of the issues to be considered in the LRFD design of a composite steel closed-box girder bridge are examined. In this process, an Excel-based design verification program is developed for easy computation and prevention of errors. Quantitative reliability levels of the bridge sections designed by LRFD are also estimated using a reliability analysis method, and compared with the target reliability indexes applied in the LRFD design to verify the validity of the procedure and methodology used in this study.

Evaluation of Structural Stability of Plastic Greenhouses with Steel Spiral Piles on Reclaimed Lands (간척지에서 강재 나선말뚝기초를 적용한 플라스틱 온실의 안전성 평가)

  • Yum, Sung Hyun;Lee, Won Bok
    • Journal of Bio-Environment Control
    • /
    • v.26 no.1
    • /
    • pp.27-34
    • /
    • 2017
  • This study was carried out to estimate structural stabilities in respect of ground footings of plastic greenhouses on reclaimed lands. A 6m-wide multi-span plastic greenhouse with steel spiral piles as well as two 8.2m-wide single-span greenhouses with steel spiral piles and continuous pipe foundation respectively were built up on a reclaimed land with a SPT N-Value of 2 and measured how much the greenhouses were lifted up and subsided. In addition, the uplift capacity of three kinds of spiral piles(${\phi}50$, ${\phi}75$ and ${\phi}100$) was determined on a nearby reclaimed land. The results showed that the greenhouses with spiral piles had a slight vertical displacement like moving up and down but the scales of the rising up and sinking were negligible when compared to that of the greenhouses. The vertical displacement of the multi-span greenhouse ranged from +9.0mm(uplift) to -11.5mm(subsidence). As for the single-span greenhouses with spiral piles and continuous pipe foundation, the measurements showed that it varied from +1.3mm to -7.7mm and from +0.9mm to -11.2mm, respectively. The allowable uplift capacity of spiral piles could all be determined under criteria of ultimate load and accordingly had a value of 0.40kN, 1.0kN and 2.5kN, respectively. It was not entirely certain enough to make a final judgement on structural stabilities in respect of ground footings, it appeared likely however that the greenhouses with steel spiral piles was tentatively observed without any problems on reclaimed lands within the period.

A Study on Reliability Based Design Criteria for Reinforced Concrete Bridge Superstructures (철근(鐵筋)콘크리트 도로교(道路橋) 상부구조(上部構造) 신뢰성(信賴性) 설계규준(設計規準)에 관한 연구(研究))

  • Cho, Hyo Nam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.3
    • /
    • pp.87-99
    • /
    • 1982
  • This study proposes a reliability based design criteria for the R.C. superstructures of highway bridges. Uncertainties associated with the resistance of T or rectangular sections are investigated, and a set of appropriate uncertainties associated with the bridge dead and traffic live loads are proposed by reflecting our level of practice. Major 2nd moment reliability analysis and design theories including both Cornell's MFOSM(Mean First Order 2nd Moment) Methods and Lind-Hasofer's AFOSM(Advanced First Order 2nd Moment) Methods are summarized and compared, and it has been found that Ellingwood's algorithm and an approximate log-normal type reliability formula are well suited for the proposed reliability study. A target reliability index (${\beta}_0=3.5$) is selected as an optimal value considering our practice based on the calibration with the current R.C. bridge design safety provisions. A set of load and resistance factors is derived by the proposed uncertainties and the methods corresponding to the target reliability. Furthermore, a set of nominal safety factors and allowable stresses are proposed for the current W.S.D. design provisions. It may be asserted that the proposed L.R.F.D. reliability based design criteria for the R.C. highway bridges may have to be incorporated into the current R.C. bridge design codes as a design provision corresponding to the U.S.D. provisions of the current R.C. design code.

  • PDF