• 제목/요약/키워드: allowable load

검색결과 509건 처리시간 0.026초

A Study on the Behavior of Piled Abutment Subjected to Lateral Soil Movement of Soft Ground Improved by Deep Cement Mixing Method (DCM 공법으로 개량된 연약지반의 측방유동을 받는 교대 말뚝기초의 거동 분석에 관한 연구)

  • Choi, Yeonho;Kang, Gyeongho
    • The Journal of Engineering Geology
    • /
    • 제30권2호
    • /
    • pp.131-145
    • /
    • 2020
  • The construction on these flimsy ground, activation of unsymmetrical surcharges, can often cause of the embankment road lateral flow or the destruction of the activities. In this study, the stability of the abutment pile foundation installed on soft ground and its behavior has been evaluated. The behavior of the abutment pile foundation under lateral flow was studied by verifying the behavior and reinforcement effects of the abutment pile foundation of previous studies about horizontal loads acting on the pile due to the lateral flow of the ground by performing finite element analysis. As a result of the consolidation analyses, the undrained cohesion or the strength of the soft ground, was increased by about 1.1 to 1.8 times by the increase in the strength of the soft ground according to the degree of consolidation. It is deemed reasonable to use 3.8 cm of the allowable displacement both economically and constructively, but considering the importance of the structure and the uncertainty of the ground, measurement shall be carried out during construction and thorough safety management of the lateral flow should be done.

Structural Performance of Y Type Plate Connection between Circular CFT Column and H Shape Steel Beam (Y형 플레이트를 적용한 원형 CFT 기둥-H형강 보 접합부의 구조성능)

  • Jo, Hyun-Kook;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제19권6호
    • /
    • pp.112-118
    • /
    • 2015
  • These days, there are lots of skyscrapers being constructed in downtown areas. However, it requires columns which have a way heavier load. and far more extensive cross sections of column as well. Therefore, it is hard to lay the foundation in downtown areas. This being the case, composite columns such as CFT column are primarily being used. However, CFT column is occurred of difficult beam-column connection development and lower performance since CFT column is closed cross-section. Especially, the result of the study concerning development of connection details with CFT column and exterior diaphragms are very low in current state. In this study, through developing CFT column-H shape steel beam applicating Y shape plate, set width and depth of Y shape plate which affect structural performance of connection details applicating Y shape plate as main variables, and evaluate structural performance through experiments. And also, design Y shape plate used at experiments as setting allowable stress for tension suggested at design criteria lower than axial force of tension side flange connected Y shape plate, through shape of destruction, verify the structural safety and performance of Y shape plate.

Estimating Fatigue Life of APD Electronic Equipment for Activation of a Spaceborne X-band 2-axis Antenna (2축 짐벌식 X-band 안테나 구동용 전장품 APD 제어보드의 피로수명 평가)

  • Jeon, Young-Hyeon;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • 제11권1호
    • /
    • pp.1-7
    • /
    • 2017
  • While a satellite is carried into orbit by a launch vehicle, it is exposed to the severe launch environment with random vibrations and shock. Accordingly, these vibration sources affect electronic equipment, particularly the printed circuit board (PCB) in the satellite. When the launch load impacts the PCB, it causes negative behavior. This causes perpendicular bending around the boundary of fixation points that finally leads to the failure of solder joints, lead wires, and PCB cracks. To overcome these issues, the electronic equipment design must meet reliability requirements. In this paper, Steinberg's method is used to derive allowable and maximum deflection to verify design from a life perspective concerning the control board of the Antenna Pointing Driver (APD) mounted on KOMPSAT-3.

Laboratory Test for Permanent Settlement Behavior of Geo-materials used in Railway Considering Grain size distribution and Water content (입도 및 함수비 조건에 따른 철도 노반 재료의 영구침하거동 요소시험평가)

  • Lee, Sung Jin;Lee, Il Wha;Lee, Su Hyung;Eum, Ki Young
    • Journal of the Korean Society for Railway
    • /
    • 제18권4호
    • /
    • pp.354-362
    • /
    • 2015
  • Since allowable settlement of concrete slab track is about 30mm, a lot of attention must be paid to the settlement of the earthwork (reinforced trackbed, upper subgrade, under subgrade) under the concrete track. To this end, more experimental data should be accumulated through tests for these materials. In this study, we evaluate the long-term settlement of reinforced trackbed and subgrade materials using factors such as repeated loading conditions, water content, and grain size distributions in a large triaxial test and a large oedometer test. In cases in which the performance of the reinforced trackbed layer meets the design criteria, the settlement caused by train load was considerably small. But, when the water content increases in the subgrade, unexpectedly large settlement might occur for certain grain size distributions of the subgrade materials.

Dynamic Centrifuge Tests for Evaluating the Earthquake Load of the Structure on Various Foundation Types (다양한 기초 형식에 따른 단자유도 구조물 지진하중 평가를 위한 동적 원심모형실험)

  • Ha, Jeong Gon;Jo, Seong Bae;Park, Heon Joon;Kim, Dong Kwan;Kim, Dong Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • 제20권5호
    • /
    • pp.285-293
    • /
    • 2016
  • Soil-foundation-structure interaction (SFSI) is one of the important issues in the seismic design for evaluating the exact behavior of the system. A seismic design of a structure can be more precise and economical, provided that the effect of SFSI is properly taken into account. In this study, a series of the dynamic centrifuge tests were performed to compare the seismic response of the single degree of freedom(SDOF) structure on the various types of the foundation. The shallow and pile foundations were made up of diverse mass and different conjunctive condition, respectively. The test specimen consisted of dry sand deposit, foundation, and SDOF structure in a centrifuge box. Several types of earthquake motions were sequentially applied to the test specimen from weak to strong intensity of them, which is known as a stage test. Results from the centrifuge tests showed that the seismic responses of the SDOF structure on the shallow foundation and disconnected pile foundation decreased by the foundation rocking. On the other hand, those on the connected pile foundation gradually increased with intensity of input motion. The allowable displacement of the foundation under the strong earthquake, the shallow and the disconnected pile foundation, have an advantage in dissipating the earthquake energy for the seismic design.

Analysis of Reinforcement Effect of Steel-Concrete Composite Piles by 3-Dimensional Numerical Analysis (3차원 수치해석을 이용한 강관합성말뚝의 보강효과 분석)

  • Kim, Sung-Ryul;Lee, Si-Hoon;Chung, Moon-Kyung;Lee, Ju-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.404-411
    • /
    • 2009
  • The steel pipe of steel-concrete composite piles increases the pile strength and induces the ductile failure by constraining the deformation of the inner concrete. In this research, the load-movement relations and the reinforcement effect by the outer steel pipe in the steel-concrete composite pile were analyzed by performing three-dimensional numerical analyses, which can simulate the yielding behavior of the pile material and the elasto-plastic behavior of soils. The parameters analyzed in the study include three pile materials of steel, concrete and composite, pile diameter and loading direction. As the results, the axial capacity of the composite pile was 1.9 times larger than that of the steel pipe pile and similar with that of the concrete pile. At the allowable movement criteria, the horizontal capacity of the composite pile was 1.46 times larger than that of the steel pile and 1.25 times larger than that of the concrete pile. In addition, the horizontal movement at the pile head of the composite pile was about 78% of that of the steel pile and about 53% of that of the concrete pile, which showed that the movement reduction effect of the composite pile was significant and enables the economical design of drilled shafts.

  • PDF

Retrofitting of vulnerable RC structures by base isolation technique

  • Islam, A.B.M. Saiful;Jumaat, Mohd Zamin;Ahmmad, Rasel;Darain, Kh. Mahfuz ud
    • Earthquakes and Structures
    • /
    • 제9권3호
    • /
    • pp.603-623
    • /
    • 2015
  • The scale and nature of the recent earthquakes in the world and the related earthquake disaster index coerce the concerned community to become anxious about it. Therefore, it is crucial that seismic lateral load effect will be appropriately considered in structural design. Application of seismic isolation system stands as a consistent alternative against this hazard. The objective of the study is to evaluate the structural and economic feasibility of reinforced concrete (RC) buildings with base isolation located in medium risk seismic region. Linear and nonlinear dynamic analyses as well as linear static analysis under site-specific bi-directional seismic excitation have been carried out for both fixed based (FB) and base isolated (BI) buildings in the present study. The superstructure and base of buildings are modeled in a 3D finite element model by consistent mass approach having six degrees of freedom at each node. The floor slabs are simulated as rigid diaphragms. Lead rubber bearing (LRB) and High damping rubber bearing (HDRB) are used as isolation device. Change of structural behaviors and savings in construction costing are evaluated. The study shows that for low to medium rise buildings, isolators can reduce muscular amount of base shears, base moments and floor accelerations for building at soft to medium stiff soil. Allowable higher horizontal displacement induces structural flexibility. Though incorporating isolator increases the outlay, overall structural cost may be reduced. The application of base isolation system confirms a potential to be used as a viable solution in economic building design.

Experimental estimate of Nγ values and corresponding settlements for square footings on finite layer of sand

  • Dixit, Manish S.;Patil, Kailas A.
    • Geomechanics and Engineering
    • /
    • 제5권4호
    • /
    • pp.363-377
    • /
    • 2013
  • Any structure constructed on the earth is supported by the underlying soil. Foundation is an interfacing element between superstructure and the underlying soil that transmits the loads supported by the foundation including its self weight. Foundation design requires evaluation of safe bearing capacity along with both immediate and long term settlements. Weak and compressible soils are subjected to problems related to bearing capacity and settlement. The conventional method of design of footing requires sufficient safety against failure and the settlement must be kept within the allowable limit. These requirements are dependent on the bearing capacity of soil. Thus, the estimation of load carrying capacity of footing is the most important step in the design of foundation. A number of theoretical approaches, in-situ tests and laboratory model tests are available to find out the bearing capacity of footings. The reliability of any theory can be demonstrated by comparing it with the experimental results. Results from laboratory model tests on square footings resting on sand are presented in this paper. The variation of bearing capacity of sand below a model plate footing of square shape with variation in size, depth and the effect of permissible settlement are evaluated. A steel tank of size $900mm{\times}1200mm{\times}1000mm$ is used for conducting model tests. Bearing capacity factor $N_{\gamma}$ is evaluated and is compared with Terzaghi, Meyerhof, Hansen and Vesic's $N_{\gamma}$ values. From the experimental investigations it is found that, as the depth of sand cushion below the footing ($D_{sc}$) increases, ultimate bearing capacity and settlement values show an increasing trend up to a certain depth of sand cushion.

Study on Fatigue Life Estimation for Aircraft Engine Support Structure (항공기 엔진 지지구조물의 피로수명 해석에 관한 연구)

  • Hur, Jang-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제34권11호
    • /
    • pp.1667-1674
    • /
    • 2010
  • The fatigue life is estimated while determining the reliability of aircraft structures. In this study, the estimation of fatigue life was carried out on the basis of a cumulative damage theory; the working S-N curve and the equivalent stress on the engine support structure significantly affect the safety of the aircraft. The maximum stress observed was 1,080 MPa in the case of scissors link under crash load condition, and there was a 5% margin for the allowable stress corresponding to the temperature reduction factor. The maximum stress was 876 MPa, and the stress equation coefficient had a maximum value of 0.019 MPa/N in the case of scissors link under fatigue loads. In the results of the fatigue life analysis, the safety life in a fretting area of scissors link upper part was 416,667 flight hour, and other parts showed to infinite life. Therefore, it was demonstrated that the fatigue life requirement of aircraft engine support structure (scissors link, straight link) could be satisfied.

Lifetime Estimation of an Axle Drive Shaft by Calibrated Accelerated Life Test Method (CALT 방법을 이용한 액슬구동축의 수명 예측)

  • Kim, Do-Sik;Kim, Hyoung-Eui;Yoon, Sung-Han;Kang, E-Sok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제34권3호
    • /
    • pp.273-281
    • /
    • 2010
  • In this paper, a method to predict the fatigue life of an axle drive shaft by the calibrated accelerated life test (CALT) method is proposed. The CALT method is very effective for predicting lifetimes, significantly reducing test time, and quantifying reliability. The fatigue test is performed by considering two high stress and one low stress levels, and the lifetime at the normal stress level is predicted by extrapolation. In addition, in this study, the major reliability parameters such as the lifetime, accelerated power index, shape parameter, and scale parameter are determined by conducting various experiments. The lifetime prediction of the axle drive shaft is verified by comparing the experimental results with load spectrum data. The results confirm that the CALT method is effective for lifetime prediction and requires a short test time.