• Title/Summary/Keyword: allowable damage

Search Result 133, Processing Time 0.027 seconds

Numerical Analysis of Concrete Lining and Rockbolt Behavior of the Tunnel Associated with Blast-induced Vibration (발파진동으로 인한 터널 콘크리트 라이닝과 록볼트 거동의 수치해석적 분석)

  • Jeon, Sang-Soo;Jang, Yang-Won
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.69-78
    • /
    • 2009
  • Since the blast vibration induced by explosives of the powder possibly provide damage of the nearby structures adjacent to the tunnel, the stability of the nearby structures should be estimated. In this study, the stability of the tunnel based on the allowable peak particle velocity of the structures as well as allowable stress of the structures presented in the concrete structural design standard was estimated with respect to the stress of the concrete lining and axial force of the rockbolt during the blasting operation at the ground surface of the pre-existing tunnel. The analyses were carried out by using $FLAC^{2D}$ which is one of the programs developed based on the finite difference method. The bending compressive stress and shear stress of the concrete lining and axial force of the rockbolt were rapidly increased when the blasting operation was conducted near the tunnel.

Analysis and Evaluation of the Effect of Blast-induced Vibration Adjacent to Industrial Facilities (산업시설 근접발파 시 발파진동 영향 분석 및 평가)

  • Kawk, Chang Won;Park, Inn Joon;Kim, Young Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.459-468
    • /
    • 2023
  • Power plant is a kind of basic industrial facility and might cause fatal industrial and human damage. In this study, the characteristics and effect of blast-induced vibration for tunnelling which underpass ○○ power plant in operation were evaluated. Previous blasting cases adjacent to industrial facilities were intensively reviewed, then allowable vibration criteria were suggested. 3 dimensional dynamic numerical analysis based on finite element method was performed to investigate particle velocity and resonance was examined by calculating the predominant frequencies. As a result, particle velocity at pump foundation which is nearest to the source was approached to the allowable criteria, therefore, the modified blasting pattern was newly suggested and confirmed the attenuation effect based on the test blasting. Consequently, appropriated decision-support procedure was established in case of adjacent blasting to industrial facilities.

Modal strength reduction factors for seismic design of plane steel frames

  • Papagiannopoulos, George A.;Beskos, Dimitri E.
    • Earthquakes and Structures
    • /
    • v.2 no.1
    • /
    • pp.65-88
    • /
    • 2011
  • A new method for the seismic design of plane steel moment resisting frames is developed. This method determines the design base shear of a plane steel frame through modal synthesis and spectrum analysis utilizing different values of the strength reduction (behavior) factor for the modes considered instead of a single common value of that factor for all these modes as it is the case with current seismic codes. The values of these modal strength reduction factors are derived with the aid of a) design equations that provide equivalent linear modal damping ratios for steel moment resisting frames as functions of period, allowable interstorey drift and damage levels and b) the damping reduction factor that modifies elastic acceleration spectra for high levels of damping. Thus, a new performance-based design method is established. The direct dependence of the modal strength reduction factor on desired interstorey drift and damage levels permits the control of deformations without their determination and secures that deformations will not exceed these levels. By means of certain seismic design examples presented herein, it is demonstrated that the use of different values for the strength reduction factor per mode instead of a single common value for all modes, leads to more accurate results in a more rational way than the code-based ones.

THE ASSESSMENT OF NOISE IN THE PEDIATRIC DENTAL CLINICS (소아치과 진료실에서 발생하는 소음 평가)

  • Kwon, Bo-Min;Lee, Ji-Hyun;Kim, Shin;Jeong, Tae-Sung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.39 no.3
    • /
    • pp.267-272
    • /
    • 2012
  • Dental professionals are exposed to various occupational risks, among which the problem of hearing damage has been newly revealed. There have been some researches reporting that noise occurring in a dental office exceeds the Occupational Safety and Health Act (OSHA) Standards. Especially, the pediatric dentists are repeatedly exposed to an additional noise source called the crying sound of children in addition to all kinds of noises from dental instruments. Accordingly, this study intended to investigate the noise environment likely to affect pediatric dentists and to examine the possibility of resultant hearing damages. The level of noise was measured respectively, when various dental instruments (ultrasonic scaler, high-speed handpiece, low-speed handpiece) are operated, when children are crying, and when both occasions take place simultaneously (from the distance of 30 cm) with a portable noise meter. And the daily duration of pediatric dentists exposed to the noise environment was surveyed. The results were compared with the standard value of noise threshold of NIOSH, OSHA, and that of hearing damage of CRA News letter respectively. Considering the intensity and exposure time, the noise environment of pediatric dentists exceeds the allowable noise threshold values. Even only one exposure to crying child was likely to lead to permanent hearing damage. Comparatively, pediatric dentists have a higher risk for occupational hearing damages, and some active measures are thought highly desirable to minimize it.

A Study on the Static/Dynamic Stability and the Fatigue Damages for the Worm Gear in the B-Axis Rotary Table of a Mill Turret (복합공구대용 B축 회전테이블 웜 기어의 정/동적 안정성 및 피로에 관한 연구)

  • Kim, Chae-Sil;Kang, Seung-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.107-115
    • /
    • 2014
  • Highly functional mill turrets have been developed and continuously improved to shorten the manufacturing time and enable multiple uses. Among these, a mill turret with B-axis rotary table was developed. The B-axis rotary table should be evaluated for structural integrity. Moreover, its worm and worm gear for transmitting power should be able to endure fatigue damage. Therefore, this article presents a structural analysis of this type of B-axis rotary table and confirms its static stability by comparing the stress results to the allowable stress levels. Next, the dynamic stability of the rotary table was investigated via a mode analysis and a harmonic analysis in a range determined by the results of a modal analysis. Finally, a worm gear set, the main part that drives the rotary table, is analyzed for fatigue and to estimate its lifetime. The results of the fatigue analysis allowed a prediction of the life of the worm gear set. The analytical results show that the B-axis rotary table has good structural integrity.

Development of Flexible Packing Ring in Steam Turbine for Reduction of Leakage by using CFD Flow Analysis (CFD 유동해석을 이용한 누설 저감을 위한 증기터빈용 플렉시블 패킹링 개발)

  • Kim, Jin Hyung;Bae, Jun Ho;Lee, Chang-Ryeol;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.7
    • /
    • pp.741-748
    • /
    • 2013
  • A conventional packing ring was designed with a large clearance to prevent damage due to the vibration of the rotor, which can lead to an increase in steam leakage. In this study, a flexible packing ring using winding springs was developed to prevent damage to the rotor teeth by minimizing vibration, while maintaining a smaller clearance than that of conventional rotor designs. Theoretical analysis and finite element analysis (FEA) were used to design the winding spring to satisfy the specified allowable stress limit and minimum load requirements. The shape of the winding spring was designed by applying curves to the center and end parts of a flat spring. Computational fluid dynamics (CFD) analysis was used to predict the leakage of the flexible packing ring. Flow rate measurement tests were performed to verify the leakage reduction efficiency and the reliability of the CFD analysis.

Study on Sebsea Pipeline Thermal Expansion (해저송유관의 열팽창 고찰)

  • 조철희;홍성근
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 1999
  • Nearshore and offshore pipelines are often applied to carry oil, gas, water and combined products. The thermal and pressure gradients of the fluid inside pipeline cause pipeline expansion. This expansion produces stress to connecting structures with pipeline. Should this stress exceeds the yield strength of connecting components or the allowable displacement of the system, a damage can occur. As most pipelines contain hazardous and toxic fluids, the damage usually leads to fatal accidents involving great economic loss as well. Even subsea pipelines can be easily applied to transport liquid type fluid without time and space constraint, they should be designed and maintained carefully to be functional safely during design lifetime. In this paper, various theories estimating pipeline thermal expansion are investigated and the effects of pipe components to expansion are studied.

  • PDF

Mechanism of stopping crack propagation in continuous fiber reinforced selfhealing ceramic

  • Jang-Won Lee;Ki-woo Nam;Wataru Nakao
    • Journal of Ceramic Processing Research
    • /
    • v.21 no.2
    • /
    • pp.200-207
    • /
    • 2020
  • The self-healing fiber-reinforced composite (abbreviation: shFRC) was made by adding SiC, a self-healing material, between an Al2O3 matrix and an Al2O3 continuous fiber. shFRC has the characteristic of healing the reduced strength by self-healing. The purpose of this study was to evaluate the damage and healing of new composite material, shFRC, and define new failure criteria. The test method used in this study was a high temperature creep test. The interface fracture behavior with time was investigated by analyzing the creep rate. The creep test conditions were 137 MPa and 150 MPa at 1,000 ℃, and 68.5 MPa, 100 MPa, and 137 MPa at 1,200 ℃, respectively. As a result, the crack propagation of 1,000 ℃ was stopped by healing, and the creep rate was zero. The crack healing part was higher than the strength before the crack formation. Due to the rapid hardening of the interface and the decrease in strength of the fiber, delayed fracture behavior was not observed at 1,200 ℃. If the crack is stopped by self-healing at a constant load, shFRC can use that load stress as the allowable stress. However, when the reaction rate of the interface is markedly rapid, crack propagation is difficult to control.

Time optimal trajectory planning for a robot system Under torque and impulse constraints.

  • Cho, Bang-Hyun;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1402-1407
    • /
    • 2004
  • Moving a fragile object from an initial point to a goal location in minimum time without damage is pursued in this paper. In order to achieve the goal, first of all, the range of maximum acceleration and velocity are specified, which the manipulator can generate dynamically on the path that is planned a priori considering the geometrical constraints. Later, considering the impulsive force constraint of the object, the range of maximum acceleration and velocity are going to be obtained to keep the object safe while the manipulator is carrying it along the curved path. Finally, a time-optimal trajectory is planned within the maximum allowable range of the acceleration and velocity. This time optimal trajectory planning can be applied for real applications and is suitable for not only a continuous path but also a discrete path.

  • PDF

Study of Two Stroke Low Speed Diesel Engine Crankshaft Crack Phenomenon by Torsional Vibration Calculation & Measurement (비틀림 진동 계산 및 측정을 통해 고찰한 선박용 2행정 저속엔진 크랭크축 파단 현상)

  • Moon, Joung-Ha;Kim, Jeong-Ryul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.6
    • /
    • pp.452-461
    • /
    • 2014
  • Two stroke low speed diesel engines that have many advantages such as high thermal efficiency and durability have been widely used for marine engine. However, it is also true that many problems have occurred due to the high explosion pressure and severe operating environment. Especially problems of shaft damage etc. intensively occurred due to the phenomenon of crankshaft exceeding the allowable stress, including the shaft vibration of the engine model in the early stage. In this study, the crankshaft fracture phenomenon of early engine model was evaluated and analyzed by using up-to-date torsional vibration calculation program and measurement instrument. And this was numerically shown.