• Title/Summary/Keyword: allelochemicals

Search Result 54, Processing Time 0.03 seconds

Assessment of Allelopathic Potential of Some Weed Species on Alfalfa(Medicago sativa L.) Germination and Early Seedling Growth (알팔파 발아와 초기생육에 대한 잡초종의 Allelopathic 잠재성 평가)

  • Chung, I.M.;Miller, D.A.
    • Korean Journal of Weed Science
    • /
    • v.15 no.2
    • /
    • pp.121-130
    • /
    • 1995
  • Greenhouse and laboratory studies were conducted to investigate allelopathic potential of some weed species on alfalfa(Medicago sativa L.) germination and seedling growth. In the comparison between top(leaves+stems) and root extracts, top extract exhibited greater allelopathic effects on alfalfa germination than that of root. The various weed species extract differently responded to alfalfa test species, WL-320, in terms of allelopathic effect. Top and root aqueous extracts of lambsquarter(Chenopodium album L.), giant foxtail(Setaria faberii Herrm.), redroot pigweed (Amaranthus retroflexus L.), velvetleaf(Abutilon theophrasti Medic.), crabgrass(Digitaria sanguinalis L.), canada thistle(Cirsium arvense L.) and prostrate knotweed(Polygonium aviculare L.) significantly inhibited germination, seedling length, weight, vigor, and rate of germination of alfalfa. The regression slopes of various top extracts showed that velvetleaf(b=3.69) extracts were the most inhibitory, while large crabgrass(b=2.39) extracts had the least allelopathic effect on alfalfa germination. Germination, seedling length and weight of alfalfa were inversely proportional to the concentration of dried velvetleaf extracts. Also, more of the toxic effects were observed from the dried extracts compared to the fresh extracts. Residue of velvetleaf inhibited significantly alfalfa emergence and survival percentage compared to the control. The emergence and survival percentage of alfalfa were 44%, 57% at 1.0% residue treatment, respectively. When weed residues were mixed with silica sand with incubation time, velvetleaf residue most inhibited alfalfa growth. The degree of inhibition increased as incubation time increased. An incubation for 72h caused the greatest inhibition of alfalfa growth. These results demonstrate the different allelopathic activity of weed species extracts on alfalfa and suggest that weed may affect alfalfa growth and development through the inhibitory effects of allelochemicals present in weed tissue.

  • PDF

Occurrence characteristics and management plans of an ecosystem-disturbing plant, Hypochaeris radicata (생태계교란 식물인 서양금혼초의 발생특성과 관리방안)

  • In-Yong Lee;Seung-Hwan Kim;Yong-Ho Lee;Sun-Hee Hong
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.3
    • /
    • pp.273-282
    • /
    • 2023
  • Hypochaeris radicata, native to Europe and Eurasia, is a perennial plant of the Asteraceae family. In Korea, H. radicata was reported in 1992, mainly in Jeju Island, and gradually spreading to the inland. It overwinters in the form of a rosette and blooms yellow flowers from May to June. H. radicata propagates by seeds and rhizomes. The germination temperature of the seed is 15/20℃ (day/night), and the rhizome forms a new plant at a depth of 2-3cm in the soil. The roots of H. radicata secrete allelochemicals that inhibit the development of other plants. Some use it as a salad or forage substitute but to a limited extent. However, extensive research on ampicillin contained in H. radicata has been conducted, and its anticancer and anti-inflammatory effects have been recognized. There are only a few methods to manage H. radicata both culturally and physically. In orchards, soil treatments such as oxyfluorfen and diclobenil, or nonselective foliar treatments such as glufosinate-ammonium and glyphosate are used. Notably, there are no known biological control agents.

Pathogen, Insect and Weed Control Effects of Secondary Metabolites from Plants (식물유래 2차 대사물질의 병충해 및 잡초 방제효과)

  • Kim, Jong-Bum
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.1-15
    • /
    • 2005
  • Pathogens, insects and weeds have significantly reduced agricultural productivity. Thus, to increase the productivity, synthetic agricultural chemicals have been overused. However, these synthetic compounds that are different from natural products cannot be broken down easily in natural systems, causing the destruction of soil quality and agricultural environments and the gradually difficulty in continuous agriculture. Now agriculture is faced with the various problems of minimizing the damage in agricultural environments, securing the safety of human health, while simultaneously increasing agricultural productivity. Meanwhile, plants produce secondary metabolites to protect themselves from external invaders and to secure their region for survival. Plants infected with pathogens produce antibiotics phytoalexin; monocotyledonous plants produce flavonoids and diterpenoids phytoalexins, and dicotylodoneous plant, despite of infected pathogens, produce family-specific phytoalexin such as flavonoids in Leguminosae, indole derivatives in Cruciferae, sesquitepenoids in Solanaceae, coumarins in Umbelliferae, making the plant resistant to specific pathogen. Growth inhibitor or antifeedant substances to insects are terpenoids pyrethrin, azadirachtin, limonin, cedrelanoid, toosendanin and fraxinellone/dictamnine, and terpenoid-alkaloid mixed compounds sesquiterpene pyridine and norditerpenoids, and azepine-, amide-, loline-, stemofoline-, pyrrolizidine-alkaloids and so on. Also plants produces the substances to inhibit other plant growths to secure the regions for plant itself, which is including terpenoids essential oil and sesquiterpene lactone, and additionally, benzoxazinoids, glucosinolate, quassinoid, cyanogenic glycoside, saponin, sorgolennone, juglone and lots of other different of secondary metabolites. Hence, phytoalexin, an antibiotic compound produced by plants infected with pathogens, can be employed for pathogen control. Terpenoids and alkaloids inhibiting insect growth can be utilized for insect control. Allelochemicals, a compound released from a certain plant to hinder the growth of other plants for their survival, can be also used directly as a herbicides for weed control as well. Therefore, the use of the natural secondary metabolites for pest control might be one of the alternatives for environmentally friendly agriculture. However, the natural substances are destroyed easily causing low the pest-control efficacy, and also there is the limitation to producing the substances using plant cell. In the future, effects should be made to try to find the secondary metabolites with good pest-control effect and no harmful to human health. Also the biosynthetic pathways of secondary metabolites have to be elucidated continuously, and the metabolic engineering should be applied to improve transgenics having the resistance to specific pest.

The Allelopathic Effects of Aqueous Extracts of Hypochaeris radicata L. on forage Crops (서양금혼초(Hypochaeris radicata L.)의 수용추출물이 사료작물에 미치는 allelopathy 효과)

  • Kim Og-Yim;Park Sun-Ill;Jung Ill-Min;Ha Sang-Young
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.871-878
    • /
    • 2005
  • This experiment was performed to examine the allelopathy effect of allelochemical substance on the crop plants. According to the experiment of the allelochemical substances in Hypochaeris radicata by HPLC, there are the differences at each part of plants. However, it is ascertained that there are 14 kinds of phenolic compounds ingredients that are $\rho$-hydroxybenzoic acid, chlorogenic acid, catechin, caffeic acid, syringic acid, salicylic acid, $\rho$-coumaric acid, ferulic acid, naringin, hesperidin, myricetin, trans-cinnamic acid, quercetin and naringenin. The chemicals like caffeic acid, ferulic acid, and naringenin are commonly included. The result of the chemical experiment shows that there are the differences at each season and part of plants. The leaves in May and blossoms and roots in July contain lots of phenolic acids. It is very high contents such as salicylic acid 2085.6 ${\mu}g/g$ and quercetin 1522.0 ${\mu}g/g$, especially in roots of plants. The result on the growth of crop plants treated by the aqueous extract of Hypochaeris radicata shows that the value of the control group and the test group are same in some cases. However, because the treat value of test group is towel'than that of control group in all items of the experiment, it is cofirmed that the growth of crop plants was inhibited and that the inhibitory effect was increased as its density of treatment was increased. The result of change in quantity shows that there are the differences at each kind of crop plants, but the inhibitory effect was increased as its concentration of treatment was increase with entire. As results, it is confirmed that H. radicata has the allelopathy effect to the crop plants. Especially the inhibitory effect on growth is high in gramineous crop, italian ryegrass and leguminous crop. purple alfalfa.