• Title/Summary/Keyword: all-sky survey

Search Result 107, Processing Time 0.031 seconds

Current Status of the KMTNet Active Nuclei Variability Survey (KANVaS)

  • Kim, Joonho;Karouzos, Marios;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.54.1-54.1
    • /
    • 2016
  • Multi-wavelength variability is a staple of active galactic nuclei (AGN). Optical variability probes the nature of the central engine of AGN at smaller linear scales than conventional imaging and spectroscopic techniques. Previous studies have shown that optical variability is more prevalent at longer timescales and at shorter wavelengths. Intra-night variability can be explained through the damped random walk model but small samples and inhomogeneous data have made constraining this model hard. To understand the properties and physical mechanism of intra-night optical variability, we are performing the KMTNet Active Nuclei Variability Survey (KANVaS). Using KMTNet, we aim to study the intra-night variability of ~1000 AGN at a magnitude depth of ~19mag in R band over a total area of ${\sim}24deg^2$ on the sky. Test data in the COSMOS, XMM-LSS, and S82-2 fields was obtained over 4, 6, and 8 nights respectively during 2015, in B, V, R, and I bands. Each night was composed of 5-13 epoch with ~30 min cadence and 80-120 sec exposure times. As a pilot study, we analyzed data in the COSMOS field where we reach a magnitude depth of ~19.5 in R band (at S/N~100) with seeing varying between 1.5-2.0 arcsec. We used the Chandra-COSMOS catalog to identify 166 AGNs among 549 AGNs at B<23. We performed differential photometry between the selected AGN and nearby stars, achieving photometric uncertainty ~0.01mag. We employ various standard time-series analysis tools to identify variable AGN, including the chi-square test. Preliminarily results indicate that intra-night variability is found for ~17%, 17%, 8% and 7% of all X-ray selected AGN in the B, V, R, and I band, respectively. The majority of the identified variable AGN are classified as Type 1 AGN, with only a handful of Type 2 AGN showing evidence for variability. The work done so far confirms there are more variable AGN at shorter wavelengths and that intra-night variability most likely originates in the accretion disk of these objects. We will briefly discuss the quality of the data, challenges we encountered, solutions we employed for this work, and our updated future plans.

  • PDF

The Use of the Unified Control Points for RPC Adjustment of KOMPSAT-3 Satellite Image (KOMPSAT-3 위성영상의 RPC보정을 위한 국가 통합기준점의 활용)

  • Ahn, Kiweon;Lee, Hyoseong;Seo, Doochun;Park, Byung-Wook;Jeong, Dongjang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.539-550
    • /
    • 2014
  • High resolution satellite images have to be oriented and geometrically processed from GCPs(Ground Control Points) to generate precise DEMs(Digital Elevation Models) and topographic maps. In Korea, thousands of national UCPS(Unified Control Points) are established and distributed all over the country by the Korean NGII(National Geographic Information Institute). For that reason, UCPs can be easily searched and downloaded by the national-control-point-record-issues system. Following the study, we suggested the sky-view and road-view from web-portals for searching and identifying UCPs on the images. To evaluate the usefulness of UCPs in RPCs(rational polynomial coefficients) adjustment of the high resolution satellite images, the one UCP, which of using simple the control point, has been applied to adjust the vendor-provided RPCs of the KOMPSAT-3 images. As a result, the positioning error of corrected RPCs was approximately one pixel and one meter. From this experiment, we conclude that the UCPs will be able to replace the survey GCPs for mapping with the satellite images or aerial images.

The First Photometric Study of NSVS 1461538: A New W-subtype Contact Binary with a Low Mass Ratio and Moderate Fill-out Factor

  • Kim, Hyoun-Woo;Kim, Chun-Hwey;Song, Mi-Hwa;Jeong, Min-Ji;Kim, Hye-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.185-196
    • /
    • 2016
  • New multiband BVRI light curves of NSVS 1461538 were obtained as a byproduct during the photometric observations of our program star PV Cas for three years from 2011 to 2013. The light curves indicate characteristics of a typical W-subtype W UMa eclipsing system, displaying a flat bottom at primary eclipse and the O'Connell effect, rather than those of an Algol/b Lyrae eclipsing variable classified by the northern sky variability survey (NSVS). A total of 35 times of minimum lights were determined from our observations (20 timings) and the SuperWASP measurements (15 ones). A period study with all the timings shows that the orbital period may vary in a sinusoidal manner with a period of about 5.6 yr and a small semi-amplitude of about 0.008 day. The cyclical period variation can be interpreted as a light-time effect due to a tertiary body with a minimum mass of 0.71 M. Simultaneous analysis of the multiband light curves using the 2003 version of the Wilson-Devinney binary model shows that NSVS 1461538 is a genuine W-subtype W UMa contact binary with the hotter primary component being less massive and the system shows a low mass ratio of q(mc/mh)=3.51, a high orbital inclination of 88.7°, a moderate fill-out factor of 30 %, and a temperature difference of ΔT=412 K. The O'Connell effect can be similarly explained by cool spots on either the hotter primary star or the cool secondary star. A small third-light corresponding to about 5 % and 2 % of the total systemic light in the B and V bandpasses, respectively, supports the third-body hypothesis proposed by the period study. Preliminary absolute dimensions of the system were derived and used to look into its evolutionary status with other W UMa binaries in the mass-radius and mass-luminosity diagrams. A possible evolution scenario of the system was also discussed in the context of the mass vs mass ratio diagram.

Status Report of the NISS and SPHEREx Missions

  • Jeong, Woong-Seob;Park, Sung-Joon;Moon, Bongkon;Lee, Dae-Hee;Park, Won-Kee;Lee, Duk-Hang;Ko, Kyeongyeon;Pyo, Jeonghyun;Kim, Il-Joong;Park, Youngsik;Nam, Ukwon;Kim, Minjin;Ko, Jongwan;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.58.2-58.2
    • /
    • 2016
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 is the near-infrared instrument optimized to the first small satellite of NEXTSat series. The capability of both imaging and low spectral resolution spectroscopy with the Field of View of $2{\times}2deg.$ in the near-infrared range from 0.9 to $3.8{\mu}m$ is a unique function of the NISS. The major scientific mission is to study the cosmic star formation history in local and distant universe. The Flight Model of the NISS is being developed and tested. After an integration into NEXTSat-1, it will be tested under the space environment. The NISS will be launched in 2017 and it will be operated during 2 years. As an extension of the NISS, SPEHREx (Spectro-Photometer for the History of the Universe Epoch of Reionization, and Ices Explorer) is the NASA SMEX (SMall EXploration) mission proposed together with KASI (PI Institute: Caltech). It will perform an all-sky near-infrared spectral survey to probe the origin of our Universe; explore the origin and evolution of galaxies, and explore whether planets around other stars could harbor life. The SPHEREx is designed to have wider FoV of $3.5{\times}7deg.$ as well as wider spectral range from 0.7 to $4.8{\mu}m$. After passing the first selection process, SPHEREx is under the Phase-A study. The final selection will be made in the end of 2016. Here, we report the current status of the NISS and SPHEREx missions.

  • PDF

MINERVA: SMALL PLANETS FROM SMALL TELESCOPES

  • WITTENMYER, ROBERT A.;JOHNSON, JOHN ASHER;WRIGHT, JASON;MCCRADY, NATE;SWIFT, JONATHAN;BOTTOM, MICHAEL;PLAVCHAN, PETER;RIDDLE, REED;MUIRHEAD, PHILIP S.;HERZIG, ERICH;MYLES, JUSTIN;BLAKE, CULLEN H.;EASTMAN, JASON;BEATTY, THOMAS G.;LIN, BRIAN;ZHAO, MING;GARDNER, PAUL;FALCO, EMILIO;CRISWELL, STEPHEN;NAVA, CHANTANELLE;ROBINSON, CONNOR;HEDRICK, RICHARD;IVARSEN, KEVIN;HJELSTROM, ANNIE;VERA, JON DE;SZENTGYORGYI, ANDREW
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.665-669
    • /
    • 2015
  • The Kepler mission has shown that small planets are extremely common. It is likely that nearly every star in the sky hosts at least one rocky planet. We just need to look hard enough-but this requires vast amounts of telescope time. MINERVA (MINiature Exoplanet Radial Velocity Array) is a dedicated exoplanet observatory with the primary goal of discovering rocky, Earth-like planets orbiting in the habitable zone of bright, nearby stars. The MINERVA team is a collaboration among UNSW Australia, Harvard-Smithsonian Center for Astrophysics, Penn State University, University of Montana, and the California Institute of Technology. The four-telescope MINERVA array will be sited at the F.L. Whipple Observatory on Mt Hopkins in Arizona, USA. Full science operations will begin in mid-2015 with all four telescopes and a stabilised spectrograph capable of high-precision Doppler velocity measurements. We will observe ~100 of the nearest, brightest, Sun-like stars every night for at least five years. Detailed simulations of the target list and survey strategy lead us to expect $15{\pm}4$ new low-mass planets.

HYPER SUPRIME-CAMERA SURVEY OF THE AKARI NEP WIDE FIELD

  • Goto, Tomotsugu;Toba, Yoshiki;Utsumi, Yousuke;Oi, Nagisa;Takagi, Toshinobu;Malkan, Matt;Ohayma, Youichi;Murata, Kazumi;Price, Paul;Karouzos, Marios;Matsuhara, Hideo;Nakagawa, Takao;Wada, Takehiko;Serjeant, Steve;Burgarella, Denis;Buat, Veronique;Takada, Masahiro;Miyazaki, Satoshi;Oguri, Masamune;Miyaji, Takamitsu;Oyabu, Shinki;White, Glenn;Takeuchi, Tsutomu;Inami, Hanae;Perason, Chris;Malek, Katarzyna;Marchetti, Lucia;Lee, HyungMoK;Im, Myung;Kim, Seong Jin;Koptelova, Ekaterina;Chao, Dani;Wu, Yi-Han;AKARI NEP Survey team;AKARIAll Sky Survey Team
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.225-230
    • /
    • 2017
  • The extragalactic background suggests half the energy generated by stars was reprocessed into the infrared (IR) by dust. At z~1.3, 90% of star formation is obscured by dust. To fully understand the cosmic star formation history, it is critical to investigate infrared emission. AKARI has made deep mid-IR observation using its continuous 9-band filters in the NEP field ($5.4deg^2$), using ~10% of the entire pointed observations available throughout its lifetime. However, there remain 11,000 AKARI infrared sources undetected with the previous CFHT/Megacam imaging (r ~25.9ABmag). Redshift and IR luminosity of these sources are unknown. These sources may contribute significantly to the cosmic star-formation rate density (CSFRD). For example, if they all lie at 1< z <2, the CSFRD will be twice as high at the epoch. We are carrying out deep imaging of the NEP field in 5 broad bands (g, r, i, z, and y) using Hyper Suprime-Camera (HSC), which has 1.5 deg field of view in diameter on Subaru 8m telescope. This will provide photometric redshift information, and thereby IR luminosity for the previously-undetected 11,000 faint AKARI IR sources. Combined with AKARI's mid-IR AGN/SF diagnosis, and accurate midIR luminosity measurement, this will allow a complete census of cosmic star-formation/AGN accretion history obscured by dust.

NEAR-INFRARED VARIABILITY OF OPTICALLY BRIGHT TYPE 1 AGN (가시광에서 밝은 1형 활동은하핵의 근적외선 변광)

  • JEON, WOOYEOL;SHIM, HYUNJIN;KIM, MINJIN
    • Publications of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.47-63
    • /
    • 2021
  • Variability is one of the major characteristics of Active Galactic Nuclei (AGN), and it is used for understanding the energy generation mechanism in the center of AGN and/or related physical phenomena. It it known that there exists a time lag between AGN light curves simultaneously observed at different wavelengths, which can be used as a tool to estimate the size of the area that produce the radiation. In this paper, We present long term near-infrared variability of optically bright type 1 AGN using the Wide-field Infrared Survey Explorer data. From the Milliquas catalogue v6.4, 73 type 1 QSOs/AGN and 140 quasar candidates are selected that are brighter than 18 mag in optical and located within 5 degree around the ecliptic poles. Light curves in the W1 band (3.4 ㎛) and W2 band (4.6 ㎛) during the period of 2010-2019 were constructed for these objects by extracting multi-epoch photometry data from WISE and NEOWISE all sky survey database. Variability was analyzed based on the excess variance and the probability Pvar. Applying both criteria, the numbers of variable objects are 19 (i.e., 26%) for confirmed AGN and 12 (i.e., 9%) for AGN candidates. The characteristic time scale of the variability (τ) and the variability amplitude (σ) were derived by fitting the DRW model to W1 and W2 light curves. No significant correlation is found between the W1/W2 magnitude and the derived variability parameters. Based on the subsample that are identified in the X-ray source catalog, there exists little correlation between the X-ray luminosity and the variability parameters. We also found four AGN with changing W1-W2 color.