• Title/Summary/Keyword: alkanethiol

Search Result 32, Processing Time 0.026 seconds

Electrochemical Properties of Electroactive Monolayers Having $[Os(bpy)_3]^{2+}$ Moieties

  • Bang, Gyeong Suk;Jeon, Il Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.3
    • /
    • pp.281-287
    • /
    • 2001
  • Self-assembled monolayers (SAMs) of the alkylthiols with [Os(bpy)3]2+ moiety at the terminal position were prepared on gold electrode surface. Examination of the cyclic voltammograms for the SAM shows that it does not organiz e well unlike alkylthiols, which is attributed to the much larger diameter of [Os(bpy)3]2+ moiety compared with the cross-section of alkyl chains and the distance between the adsorption sites. Electromicrogravimetry study shows that the hydration numbers of the electrolyte were 16 $\pm2$, 11 $\pm1$, 5 $\pm$ 1 and 24 $\pm6$ for ClO4- , PF6-, NO3- , and SO42- , respectively. The binary SAMs of alkylthiols with [Os(bpy)3]2+ terminal-group were prepared by co-adsorption of alkylthiols as spacer molecules, which results in better packing in SAM and accordingly the stability was enhanced.

Influence of Surface Morphology and Substrate on Thermal Stability and Desorption Behavior of Octanethiol Self-Assembled Monolayers

  • Ito, Eisuke;Gang, Hun-Gu;Ito, Hiromi;Hara, Masahiko;No, Jae-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.219-219
    • /
    • 2012
  • The formation and thermal desorption behaviors of octanethiol (OT) SAMs on single crystalline Au (111) and polycrystalline Au, Ag, and Cu substrates were examined by X-ray photoelectron microscopy (XPS), thermal desorption spectroscopy (TDS), and contact angle (CA) measurements. XPS and CA measurements revealed that the adsorption of octanethiol (OT) molecules on these metals led to the formation of chemisorbed self-assembled monolayers (SAMs). Three main desorption fragments for dioctyl disulfide (C8SSC8+, dimer), octanethiolate (C8S+), and octanethiol (C8SH+) were monitored using TDS to understand the effects of surface morphology and the nature of metal substrates on the thermal desorption behavior of alkanethiols. TDS measurements showed that a sharp dimer peak with a very strong intensity on single crystalline Au (111) surface was dominantly observed at 370 K, whereas a broad peak on the polycrystalline Au surface was observed at 405 K. On the other hand, desorption behaviors of octanethiolates and octanethiols were quite similar. We concluded that substrate morphology strongly affects the dimerization process of alkanethiolates on Au surfaces. We also found that desorption intensity of the dimer is in the order of Au>>Ag>Cu, suggesting that the dimerization process occurs efficiently when the sulfur-metal bond has a more covalent character (Au) rather than an ionic character (Ag and Cu).

  • PDF

Phase Transition of Octaneselenolate Self-assembled Monolayers on Au(111) Studied by Scanning Tunneling Microscopy

  • Choi, Jung-Seok;Kang, Hun-Gu;Ito, Eisuke;Hara, Masahiko;Noh, Jae-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2623-2627
    • /
    • 2011
  • We investigated the surface structure and wetting behavior of octaneselenolate self-assembled monolayers (SAMs) on Au(111) formed in a 50 ${\mu}M$ ethanol solution according to immersion time, using scanning tunneling microscopy (STM) and an automatic contact angle (CA) goniometer. Closely-packed, well-ordered alkanethiol SAMs would form as the immersion time increased; unexpectedly, however, we observed the structural transition of octaneselenolate SAMs from a molecular row phase with a long-range order to a disordered phase with a high density of vacancy islands (VIs). Molecularly resolved STM imaging revealed that the missing-row ordered phase of the SAMs could be assigned as a $(6{\times}{\surd}3)R30^{\circ}$ superlattice containing three molecules in the rectangular unit cell. In addition, CA measurements showed that the structural order and defect density of VIs are closely related to the wetting behaviors of octaneselenolate SAMs on gold. In this study, we clearly demonstrate that interactions between the headgroups and gold surfaces play an important role in determining the physical properties and surface structure of SAMs.

Thermal behavior of Alkanethiolate Self-Assembled Monolayers on the Cu(111)

  • Lee, Sun S.;Myung M. Sung;Kim, Yunsoo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.181-181
    • /
    • 1999
  • Self-assembled monolayers(SAMs) of alkanethiol have been formed on the Cu(111) surfaces in vacuum. The thermal behavior of octanethiol-based SAMs on the Cu(111) surface have been examined in ultrahigh vacuum. Using X-ray photoelectron spectroscopy (XPS), it is found that the monolayers are stable up to about 500K in vacuum. Decomposition is signaled by a decrease in the intensity of C ls peak, accompanied by an increase of the intensity of the Cu 2p peak. However, the intensity of the S 2p peak doesn't change much as a function of annealing temperature. Thermal the decomposition mass spectra show that n-alkene is the predominant species desorbing from the surface in the 500-600K temperature range. The totality of these data leads to the conclusion that the monolayers decompose through the S-C bond cleavage by hydrogen elimination reaction, resulting in the desorption of hydrocarbon moiety as n-alkene. Following this initial decomposition step, Cu2S layers are observed on the surface. For comparison, attempts were also made to examine the thermal behavior of octanethiol-based SAMs on the Cu(111) surface in air. It has been shown that the SAMs on the Cu(111) surfaces begin to desorb with the oxidation of the thiolate to sulfonate at 400K. Upon annealing to 450K, the monolayer has almost completely desorbed as indicated by the virtual disappearance of the S 2p peak.

  • PDF

The Effect of Process Condition in Nano-molding on the Property of SAM (self-assembled monolayer) (나노성형 공정 조건이 자기조립 단분자막의 이형 특성에 미치는 영향)

  • Lee, Nam-Seok;Han, Jeong-Won;Kang, Shin-Ill
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.83-86
    • /
    • 2005
  • In this study, SAM (self-assembled monolayer) was applied as an anti-adhesion layer in the nano molding process, to reduce the surface energy between the nano-stamper and the moldeded polymeric nano patterns. Before depositing SAM on the stamper, the nickel stamper was pretreated to remove oxide on the nickel stamper surface. Then, using the solution deposition method, alkanethiol SAM as an anti-adhesion layer was deposited on nickel surface. To examine the effectiveness of the SAM deposition on the metallic nano stamper, the contact angle and the lateral friction force were measured at the actual processing temperature and pressure for the case of nano compression molding and at the actual UV dose for the case of nano UV molding. The surface energy due to SAM deposition on the nickel nano stamper markedly decreased and the high hydrophobic quality of SAM on the nickel stamper maintained under the actual molding environments.

  • PDF

Surface Potential Change Depending on Molecular Orientation of Hexadecanethiol Self-Assembled Monolayers on Au(111)

  • Ito, Eisuke;Arai, Takayuki;Hara, Masahiko;Noh, Jaegeun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.1309-1312
    • /
    • 2009
  • Surface potential and growth processes of hexadecanethiol (HDT) self-assembled monolayers (SAMs) on Au(111) surfaces were examined by Kelvin probe method and scanning tunneling microscopy. It was found that surface potential strongly depends on surface structure of HDT SAMs. The surface potential shift for the striped phase of HDT SAMs chemisorbed on Au(111) surface was +0.45 eV, which was nearly the same as that of the flat-lying hexadecane layer physisorbed on Au(111) surface. This result indicates that the interfacial dipole layer induced by adsorption of alkyl chains is a main contributor to the surface potential change. In the densely-packed HDT monolayer, further change of the surface potential was observed, suggesting that the dipole moment of the alkanethiol molecules is an origin of the surface potential change. These results indicate that the work function of a metal electrode can be modified by controlling the molecular orientation of an adsorbed molecule.

Precise Analysis of the Surface Oxidation Layer on Cu Powders Using FE-TEM Techniques (전계방출 투과전자현미경 분석기술을 이용한 Cu 입자 표면산화층의 정밀평가)

  • Lee, Tae Hun;Yoo, Jung Ho;Hyun, Moon Seop;Yang, Jun-Mo;Seong, Mi-Ryn;Kwon, Jinhyeong;Lee, Caroline Sunyong;Kim, Jeong-Sun;Baik, Kyeong Ho
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.57-61
    • /
    • 2010
  • Nanosized surface structures of Cu powders were investigated at the atomic scale by field-emission transmission electron microscope techniques. The nanoscale surface oxide layer on the Cu powder was analyzed to be the $CU_2O$ phase by electron diffraction pattern and electron energy-loss spectroscopy. In addition, it was found from high-resolution transmission electron microscopy study that there are formed no surface oxide layers on the surface of alkanethiol coated Cu powders.

Surface Structures and Thermal Desorption Behaviors of Cyclopentanethiol Self-Assembled Monolayers on Au(111)

  • Kang, Hun-Gu;Kim, You-Young;Park, Tae-Sun;Park, Joon-B.;Ito, Eisuke;Hara, Masahiko;Noh, Jae-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1253-1257
    • /
    • 2011
  • The surface structures, adsorption conditions, and thermal desorption behaviors of cyclopentanethiol (CPT) self-assembled monolayers (SAMs) on Au(111) were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). STM imaging revealed that although the adsorption of CPT on Au(111) at room temperature generates disordered SAMs, CPT molecules at $50^{\circ}C$ formed well-ordered SAMs with a $(2{\surd}3{\times}{\surd}5)R41^{\circ}$ packing structure. XPS measurements showed that CPT SAMs at room temperature were formed via chemical reactions between the sulfur atoms and gold surfaces. TDS measurements showed two dominant TD peaks for the decomposed fragments ($C_5H_9^+$, m/e = 69) generated via C-S bond cleavage and the parent molecular species ($C_5H_9SH^+$, m/e = 102) derived from a recombination of the chemisorbed thiolates and hydrogen atoms near 440 K. Interestingly, dimerization of sulfur atoms in n-alkanethiol SAMs usually occurs during thermal desorption and the same reaction did not happen for CPT SAMs, which may be due to the steric hindrance of cyclic rings of the CPT molecules. In this study, we demonstrated that the alicyclic ring of organic thiols strongly affected the surface structure and thermal desorption behavior of SAMs, thus providing a good method for controlling chemical and physical properties of organic thiol SAMs.

Fabrication of Micro Patterned Fibronectin for Studying Adhesion and Alignment Behavior of Human Dermal Fibroblasts

  • Lee, Seung-Jae;Son, Young-Sook;Kim, Chun-Ho;Choi, Man-Soo
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.348-356
    • /
    • 2007
  • The aim of this study was to fabricate a submicro-and micro-patterned fibronectin coated wafer for a cell culture, which allows the positions and dimensions of the attached cells to be controlled. A replica molding was made into silicon via a photomask in quartz, using E-beam lithography, and then fabricated a polydimethylsiloxane stamp using the designed silicon mold. Hexadecanethiol $[HS(CH_2){_{15}}CH_3]$, adsorbed on the raised plateau of the surface of polydimethylsiloxane stamp, was contact-printed to form self-assembled monolayers (SAMs) of hexadecanethiolate on the surface of an Au-coated glass wafer. In order to form another SAM for control of the surface wafer properties, a hydrophilic hexa (ethylene glycol) terminated alkanethiol $[HS(CH_2){_{11}}(OCH_2CH_2){_6}OH]$ was also synthesized. The structural changes were confirmed using UV and $^1H-NMR$ spectroscopies. A SAM terminated in the hexa(ethylene glycol) groups was subsequently formed on the bare gold remaining on the surface of the Aucoated glass wafer. In order to aid the attachment of cells, fibronectin was adsorbed onto the resulting wafer, with the pattern formed on the gold-coated wafer confirmed using immunofluorescence staining against fibronectin. Fibronectin was adsorbed only onto the SAMs terminated in the methyl groups of the substrate. The hexa (ethylene glycol)-terminated regions resisted the adsorption of protein. Human dermal fibroblasts (P=4), obtained from newborn foreskin, only attached to the fibronectin-coated, methyl-terminated hydrophobic regions of the patterned SAMs. N-HDFs were more actively adhered, and spread in a pattern spacing below $14{\mu}m$, rather than above $17{\mu}m$, could easily migrate on the substrate containing spacing of $10{\mu}m$ or less between the strip lines.

Carbamate-Based Surface Reactions for Release of Amine Molecules from Electroactive Self-Assembled Monolayers

  • Hong, Dae-Wha;Kang, Kyung-Tae;Hong, Seok-Pyo;Shon, Hyun-Kyong;Lee, Tae-Geol;Choi, In-Sung S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.208-209
    • /
    • 2011
  • In this work, we developed self-assembled monolayers (SAMs) of alkanethiols on gold that can release amine groups, when an electrical potential was applied to the gold. The strategy was based on the introduction of the electroactive carbamate group, which underwent the two-electron oxidation with simultaneous release of the amine molecules, to alkanethiols. The synthesis of the designed thiol compounds was achieved by coupling isocyanate-containing compound with hydroquinone. The electroactive thiols were mixed with hydroxyl-containing alkanethiol [$HS(CH_2)_{11}OH$] to form mixed monolayers, and cyclic votammetry was used for the characterization of the release. The mixed SAMs showed a first oxidation peak at +540 mV (versus Ag/AgCl reference electrode), demonstrating irreversible conversion from carbamate to hydroqinone with simultaneous release of the amine groups. The second and third cycles showed typical reversible redox reaction of hydroquinone and quione: the oxidation and reduction occurred at +290 mV and -110 mV, respectively. The measurement of ToF-SIMS further indicates that electrochemical-assisted chemical reaction successfully released amine groups. This new SAM-based electrochemistry would be applicable for direct release of biologically active molecules that contain amine groups.

  • PDF