• Title/Summary/Keyword: alkanes

Search Result 178, Processing Time 0.022 seconds

Inhibitory Effects of Pepper Mild Mottle Virus Infection by Supernatants of Five Bacterial Cultures in Capsicum annuum L.

  • Venkata Subba Reddy, Gangireddygari;In-Sook, Cho;Sena, Choi;Ju-Yeon, Yoon
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.646-655
    • /
    • 2022
  • Pepper mild mottle virus (PMMoV), one of the most prevalent viruses in chili pepper (Capsicum annuum L.) is a non-enveloped, rod-shaped, single-stranded positive-sense RNA virus classified in the genus Tobamovirus. The supernatants of five bacterial cultures (Pseudomonas putida [PP], Bacillus licheniformis [BLI], P. fluorescens [PF], Serratia marcescens [SER], and B. amyloliquifaciens [BA]) were analyzed to find novel antiviral agents to PMMoV in chili pepper. Foliar spraying with supernatants (1:1, v/v) obtained from Luria-Bertani broth cultures of PP, BLI, PF, SER, and BA inhibited PMMoV infection of chili pepper if applied before the PMMoV inoculation. Double-antibody sandwich enzyme-linked immunosorbent assay showed that treatments of five supernatants resulted in 51-66% reductions in PMMoV accumulation in the treated chili pepper. To identify key compounds in supernatants of PP, BLI, PF, SER, and BA, the supernatants were subjected to gas chromatography-mass spectrometry. The 24 different types of compounds were identified from the supernatants of PP, BLI, PF, SER, and BA. The compounds vary from supernatants of one bacterial culture to another which includes simple compounds-alkanes, ketones, alcohols, and an aromatic ring containing compounds. The compounds triggered the inhibitory effect on PMMoV propagation in chili pepper plants. In conclusion, the cultures could be used to further conduct tissue culture and field trial experiments as potential bio-control agents.

Formation of Al2O2 supported Ni2P based 3D catalyst for atmospheric deoxygenation of rubberwood sawdust

  • Pranshu Shrivastava
    • Advances in Energy Research
    • /
    • v.8 no.4
    • /
    • pp.223-231
    • /
    • 2022
  • An ex-situ gravitational fixed bed pyrolysis reactor was used over Al2O3 supported Ni2P based catalyst with various Ni/P molar ratios (0.5-2.0) and constant nickel loading of 5.37 mmol/g Al2O3 to determine the hydrodeoxygenation of rubberwood sawdust (RWS) at atmospheric pressure. The 3D catalysts formed were characterized structurally as well as acidic properties were determined by hydrogen-temperature programmed reduction (TPR). The Ni2P phase formed completely on Al2O3 for 1.5 Ni/P ratio, although lesser crystallite sizes of Ni2P were seen at Ni/P ratios less than 1.5. Additionally, it was shown that when nickel loading level increased, acidity increased and specific surface area dropped, probably because nickel phosphate is not easily converted to Ni2P. When Ni/P ratio was 1.5, Ni2P phase fully formed on Al2O3. The catalytic activity was explained in terms of impacts of reaction temperature and Ni/P molar ratio. At relatively high temperature of 450℃, the high-value deoxygenated produce was predominantly composed of n-alkanes. Based on the findings, it was suggested that hydrogenolysis, hydrodeoxygenation, dehydration, decarbonylation, and hydrogenation are all part of mechanism underlying hydrotreatment of RWS. In conclusion, the synthesized Ni2P/ Al2O3 catalyst was capable of deoxygenating RWS with ease at atmospheric pressure, primarily resulting in long chained (C9-C24) hydrocarbons and acetic acid.

Identification of Major Crude Oils Imported into Korea using Molecular and Stable Carbon Isotopic Compositions (분자지표 및 탄소안정동위원소 조성비를 이용한 국내 수입 주요 원유의 식별)

  • Kim, Eun-Sic;An, Jun-Geon;Kim, Gi-Beum;Shim, Won-Joon;Joo, Chang-Kyu;Kim, Moon-Koo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.247-256
    • /
    • 2012
  • Stable carbon isotope ratio of oil components are known to be unaffected by weathering processes and thus has been widely used to determine the origin of spilled oil. In this study, molecular index and composition of stable carbon isotope in 15 crude oils and petroleum product were analyzed and used as oil fingerprints to determine the discriminating power of each fingerprinting method among target crude oils. Through the fingerprints of alkane distribution only Bintulu and B-C(1%) were distinguishable from other crude oils. The pristane/phytane ratio can classify the crude oils into three groups but differentiation of crude oils within a group was impossible using the ratio. The crude oils of A.L., A.S.L., Foroozan and B-C(1%) were differentiated from the other oils using PAH source recognition indexes of C2D/C2P and C3D/C3P. The usage of 4-mD/1-mD and 2/3-mD/1-mD ratio was able to distinguish A.S.L., Bintulu and Oman from the other crude oils. However the PAH source recognition ratios in the other crude oils were similar and thus they were impractical to be used for source identification among the target crude oils. Stable carbon isotope ratios of alkanes were able to uniquely specify each crude oil in the plot of ${\delta}^{13}C_{C21}$ and ${\delta}^{13}C_{C25}$ except A.L., A.M., Qatar-Marine, B-C(1%). The oil fingerprinting method using stable carbon isotope ratios of individual alkane compounds showed more discriminating power among the target crude oils than the conventional source recognition indexes of PAHs or alkanes.

Determination of Liquid Paraffins in Foods by Using GC-FID (GC-FID를 이용한 식품 중 유동파라핀 함량 분석)

  • Park, Se-Jong;Choi, Jae-Chun;Lim, Ho-Soo;Jang, Su-Jin;Kim, So-Hee;Kim, Meehye
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.545-549
    • /
    • 2013
  • Liquid paraffin is a mixture of heavier alkanes derived from petroleum. It can be used as a lubricant in processing machinery, as a coating agent, or as a releasing agent. The purpose of this study was to analyze liquid paraffins in foods by using a gas chromatography-flame ionized detector (GC-FID). Liquid paraffin was extracted from the food samples using n-hexane. Non-polar aromatic or olefinic co-extractives were removed by alkaline permanganate oxidation followed by clean up on an aluminium oxide SPE cartridge before the GC-FID analysis. The results of recovery tests were 91.5-103.2%. Based on this optimized method, we investigated the amount of liquid paraffin in various food samples purchased from domestic markets. The levels of liquid paraffin in bread were $95.5{\pm}156.0$ mg/kg (0.008%), those in capsules were $40.2{\pm}54.5$ mg/kg (0.001%), and those in dried fruits and vegetables were $3.0{\pm}18.1$ mg/kg (0.0001%). No liquid paraffin was detected in fresh fruits and vegetables. We propose that our method can be used to monitor and detect liquid paraffin in foods for food safety management.

Assessment of VOCs Emission Characteristics from Building Materials such as Wall Paper, Paints, and Adhesives Using Small Chamber Method (소형챔버법을 이용한 건축자재 중 벽지, 페인트 및 접착제의 VOCs 방출특성 평가)

  • Lee Suk-Jo;Jang Seong-Ki;Cho Yong-Sung;Jung Kyung- Mi;Jeong Gi-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.2
    • /
    • pp.191-204
    • /
    • 2005
  • Building and furnishing materials and consumer product are important sources of volatile organic compounds(VOCs) and other aldehydes in the indoor environment. Some available evidence indicates that VOCs can cause adverse health effects to the building occupants and contribute to some of the symptoms of what we call, 'Sick House Syndrome' in Korea. The aims of this study were to evaluate the efficiency of emission system and to investigate comparison of the emission characteristics of different building materials such as wall-papers, paints, and adhesives. The emission of VOCs from building materials were determined in the small chambers defining the temperature, relative humidity, and ventilation rate in this study. VOCs were sampled for 20 minutes using Tenax-TA tubes and analysed by GC-MS with thermal desorption. The stability of conditions for temperature and relative humidity in this small chamber system showed that the fluctuation of temperature was between 25.4$\pm$0.3$^{\circ}C$ and that of relative humidity was 50.2$\pm$0.6$\%$ under the airflow rate of 167 mL/min. The emission tests from building materials resulted in TVOC emission rates of 0.011 $\~$ 3.108 mg/m$^{2}$h after 7 days. The general wall-papers emitted toluene abundantly and the natural wall-papers mainly emitted n-butanol and a minor amount of alkanes compound such as n -tetradecane. The remainder consisted of toluene, m,p -xylene, and styrene. The paints mainly emitted toluene and the adhesives mainly emitted chloroform as well as toluene. As a result, this study is expected to suggest meaningful data for future studies in exposure control through selecting healthy building materials and for the establishment of guidelines for various building materials in Korea.

Evaluation of Various Storage Temperatures and Times on the Composition of Volatile Compounds Extracted from Fresh Pork Belly (저장 온도와 시간이 신선한 돈육 삼겹 부위로부터 추출한 휘발성 화합물의 조성에 미치는 영향)

  • Park, Sung-Yong;Chin, Koo-Bok;Yoo, Seung-Seok
    • Food Science of Animal Resources
    • /
    • v.26 no.4
    • /
    • pp.441-446
    • /
    • 2006
  • The objective of this study was to investigate volatile compounds extracted from fresh pork belly during storage time at 4 or $20^{\circ}C$. Approximately thirty-one volatile compounds includingaromatics (6), aldehydes (6), acids (5), alcohols (4), ketones (4), alkanes (4), alkenes (1) and amines (1) in fresh pork belly were identified. Among them, volatile compounds such as 1-butanol, propane, 2-butanol, 3-hydroxy-2-butanone, acetic acid, 3-methyl-1-butanol, 1-pentanol, phenol, 2-pentyl-furan, indole and 2-dodecanone correlated with storage temperature and storage time. Aldehydes including hexanal and hexadecanal at 4t were the predominant volatile compounds, whereas at $20^{\circ}C$ storage, aromatics including phenol and indole, and alcohols including 2-butanol and 1-butanol were the predominant volatile compounds. Contents of 1-butanol, 2-butanol, 3-hydroxy-2-butanone, acetic acid, phenol and indole increased markedly with increased storage time, and 1-butanol, 2-butanol, 3-hydroxy-2-butanone, acetic acid, indole and 2-dodecanone were only detected at $20^{\circ}C$ storage.

Fingerprint of Carcinogenic Semi-Volatile Organic Compounds (SVOCs) during Bonfire Night

  • Pongpiachan, Siwatt
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.3243-3254
    • /
    • 2013
  • It is well known that increased incidences of lung, skin, and bladder cancers are associated with occupational exposure to PAHs. Animal studies show that certain PAHs also can affect the hematopoietic and immune systems and can produce reproductive, neurologic, and developmental effects. As a consequence, several studies have been attempted to investigate the fate of PAHs in atmospheric environment during the past decades. However, there is still a lack of information in regard to the atmospheric concentration of PAHs during the "Bon Fire Night". In this study, twenty-three polycyclic aromatic hydrocarbons and twenty-eight aliphatics were identified and quantified in the $PM_{10}$ and vapour range in Birmingham ($27^{th}$ November 2001-$19^{th}$ January 2004). The measured concentrations of total particulate and vapour (P+V) PAHs were consistently higher at the BROS in both winter and summer. Arithmetic mean total (P+V) PAH concentrations were $51.04{\pm}47.62$ ng $m^{-3}$ and $22.30{\pm}19.18$ ng $m^{-3}$ at the Bristol Road Observatory Site (BROS) and Elms Road Observatory Site (EROS) respectively. In addition arithmetic mean total (P+V) B[a]P concentrations at the BROS were $0.47{\pm}0.39$ ng $m^{-3}$ which exceeded the EPAQS air quality standard of 0.25 ng $m^{-3}$. On the other hand, the arithmetic mean total (P+V) aliphatics were $81.80{\pm}69.58$ ng $m^{-3}$ and $48.00{\pm}35.38$ ng $m^{-3}$ at the BROS and EROS in that order. The lowest average of CPI and $C_{max}$ measured at the BROS supports the idea of traffic emissions being a principle source of SVOCs in an urban atmosphere. The annual trend of PAHs was investigated by using an independent t-test and oneway independent ANOVA analysis. Generally, there is no evidence of a significant decline of heavier MW PAHs from the two data sets, with only Ac, Fl, Ph, An, 2-MePh, 1+9-MePh, Fluo and B[b+j+k]F showing a statistically significant decline (p<0.05). A further attempt for statistical analysis had been conducted by dividing the data set into three groups (i.e. 2000, 2001-2002 and 2003-2004). For lighter MW compounds a significant level of decline was observed by using one-way independent ANOVA analysis. Since the annual mean of $O_3$ measured in Birmingham City Centre from 2001 to 2004 increased significantly (p<0.05), it may be possible to attribute the annul reduction of more volatile PAHs to the enhanced level of annual average $O_3$. By contrast, the heavier MW PAHs measured at the BROS did not show any significant annual reduction, implying the difficulties of 5- and 6-ring PAHs to be subject to photochemical decomposition. The deviation of SVOCs profile measured at the EROS was visually confirmed during the "Bonfire Night" festival closest to the $6^{th}$ November 2003. In this study, the atmospheric PAH concentrations were generally elevated on this day with concentrations of Fl, Ac, B[a]A, B[b+j+k]F, Ind and B[g,h,i]P being particularly high.

Characteristics of Samjangs Prepared with Different Doenjangs As a Main Material (원료된장을 달리하여 제조한 쌈장의 품질특성)

  • Kim, Hye-Lim;Lee, Taik-Soo;Noh, Bong-Soo;Park, Jung-Suk
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.54-61
    • /
    • 1998
  • Samjangs (Korean-style mixture of soybean paste) were prepared using magjang, traditional doenjang (Korean style soybean paste), and mixture of traditional doenjang and magjang (a kind of Korean style soybean paste) as a main composition. Charateristics including volatile compounds were investigated. Total sugar in samjang by using magjang was higher than that of other treatment while reducing sugar of the mixed treatment was high. Glutamic acid $(230.6{\sim}310.9\;mg/100\;g)$ was highest among free amino acids. Hunter color values of samjang with magjang was lower than those of others. Volatitle flavor components of smajang were identified with GC and GC-MSD. Fifty four components including 11 alcohols, 7 esters, 13 acids, 3 aldehydes, 4 alkanes, 4 phenols, 3 pyrazine and others were found in samjangs. Ethanol, acetic acid ethyl ester, 3-methyl butanoic acid, 2,4-hexadienoic acid and acetic acid might be major volatile components considering of high peak area. Pentanoic acid methyl ester and 4-methoxy-2-buten-1-ol were higher than other components in samjang with magjang while 2-methyl-1-propanol, butanoic acid and 3-methyl butanoic acid were in samjang with traditional doenjang and ethanol, acetic acid ethyl ester and 2,4-hexadienoic acid were in the mixed treatment.

  • PDF

Changes of Volatile Flavor Compounds in Traditional Kochujang during Fermentation (재래식고추장 숙성과정 중의 휘발성 향기성분의 특성)

  • Choi, Jin-Young;Lee, Taik-Soo;Park, Sung-Oh;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.745-751
    • /
    • 1997
  • Volatile flavor components of kochujang made from a glutinuous rice by traditional method were analyzed by using purge and trap method during fermentation, and identified with GC-MSD. Fifty-one volatile components including 19 alcohols, 13 esters, 7 acids, 3 aldehydes, 1 alkanes, 2 ketones, 2 amines, 1 benzene, 1 alkene, 1 phenol and others were found in kochujang made by traditional method. The number of volatile components detected immediately after making kochujang were 22 and increased to 41 components after 30 day of fermentation. The most number 51 of volatile components were found after 120 day of fermentation. Twenty-two volatile components were commonly found through the fermentation period such as acetic acid ethyl ester, ethanol, butanoic acid ethyl ester, 1-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol, butanoic acid and ethenone. Peak area(%) of 1-butanol was the highest one among the volatile components at immediately after mashing while ethanol showed the highest peak area after 30 day of fermentation. Although the various types of peak areas of volatile components were shown in kochujang during the fermentation days, acetic acid-ethyl ester, ethanol, butanoic acid-ethyl ester, 1-butanol, 3-methyl-1-butanol and 2-methyl-1-propanol were mainly detected during fermentation. Those might be the major volatile components in kochujang made by traditional method.

  • PDF

Estimation on the Contribution of VOCs and Nitric Oxides in Creating Photochemical Ozone (휘발성유기화합물과 질소산화물의 오존생성 기여도 평가에 관한 연구)

  • Cheong, Jang-Pyo;You, Sook-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.209-218
    • /
    • 2010
  • The fifty six components of volatile organic compounds(VOCs) were continuously measured by the hour to see the distributions their of its concentration and the ozone creating contribution of nitric oxides and VOCs in Gamjeon Odor and VOCs Monitoring Network from April to September, 2008. Aromatics occupied 51.3% of VOCs and paraffins, alkanes and olefins came in order. The monthly concentration of VOCs in Gamjeon was high in July and low in September. As for hourly concentration of ozone and nitric oxides, ozone started to increase since 10am having the highest in the daytime, and nitric oxides had the different trend from that of ozone, showing the lowest in the daytime. The photochemical ozone creating potentials(POCPs) of toluene, propane, m/p-xylene, ethylbenzene, and 1,2,4-trimethylbenzene were 30.6%, 10.2%, 9.4%, 7.4% and 5.2% respectively. These five components occupied 62.8% of total POCPs, which means they contributed to the ozone creation mainly. Related with the ozone creating contribution, the ratio of VOCs to NOx was generally under 6 occupied 72.0%, which came under the area coexisting the limit of VOCs. Therefore it is thought that the management of emission source of VOCs is very important for the reduction of ozone.