• Title/Summary/Keyword: alkaline water

Search Result 873, Processing Time 0.022 seconds

Characterization of Ni-Fe Alloy Electrodeposited Electrode for Alkaline Water Electrolysis (알칼라인 수전해용 Ni-Fe 합금 전착 전극의 특성)

  • AN, DA-SOL;BAE, KI-KWANG;PARK, CHU-SIK;KIM, CHANG-HEE;KANG, KOUNG-SOO;CHO, WON-CHUL;CHO, HYUN-SEOK;KIM, YOUNG-HO;JEONG, SEONG-UK
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.6
    • /
    • pp.636-641
    • /
    • 2016
  • Alkaline water electrolysis is commercial hydrogen production technology. It is possible to operate MW scale plant. Because It used non-precious metal for electrode. But It has relatively low current density and low efficiency. In this study, research objective is development of anode for alkaline water electrolysis with low cost, high corrosion resistance and high efficiency. Stainless steel 316L (SUS 316L) was selected for a substrate of electrode. To improve corrosion resistance of substrate, Nickel (Ni) layer was electrodeposited on SUS 316L. Ni-Fe alloy was electrodeposited on the passivated Ni layer as active catalyst for oxygen evolution reaction(OER). We optimized preparation condition of Ni-Fe alloy electrodeposition by changing current density, electrodeposition time and composition ratio of Ni-Fe electrodeposition bath. This electrodes were electrochemically evaluated by using Linear sweep voltammetry (LSV) and Cyclic voltammetry (CV). The Ni-Fe alloy (Ni : Fe = 1 : 1) showed best activity of OER. The optimized electrode decreased overpotential about 40% at $100mA/cm^2$ compared with Ni anode.

Evaluating the Durability of Concrete Combined with Ground Granulated Blast Furnace Slag using Electrolysis Alkaline Aqueous as Mixing Water (전기분해 알칼리수를 배합수로 사용한 고로슬래그 미분말 혼입 콘크리트의 내구성)

  • Jeong, Su-Mi;Kim, Ju-Sung;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.4
    • /
    • pp.349-358
    • /
    • 2023
  • This research aimed to enhance the initial strength of concrete that is mixed with ground granulated blast furnace slag, as well as to fortify its resistance to carbonation and chloride ion permeation. To achieve this, alkaline aqueous, produced through the electrolysis of potassium carbonate, was employed as the mixing water in the preparation of concrete. To substantiate the increment in initial strength, compressive strength measurements of the concrete were executed. Additionally, an accelerated carbonation test and a chloride ion permeation resistance test were undertaken. The results confirmed that the initial strength of the concrete, which utilized electrolysis alkaline aqueous as mixing water, exhibited an improvement in comparison to concrete mixed with conventional water. It was also verified that both carbonation resistance and chloride ion permeation resistance showed enhancements.

Carbonation of Circulating Fluidized Bed Combustion Fly Ash with Hybrid Reaction

  • Lee, Ki Gang;Bae, Soon Jong
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.2
    • /
    • pp.160-165
    • /
    • 2018
  • This paper investigates the reaction rate of $CO_2$ storing carbonation hybrid reaction by comparing the behavior of carbonation between $Ca(OH)_2$ and fly ash with that of CFBC (Circulating Fluidized Bed Combustion) containing plenty of Free-CaO. Because fly ash with CFBC contains a lot of unreacted CaO, it cannot be used as a raw material for concrete admixtures and its usages are limited. To reuse such material, we stabilized unreacted CaO by carbonation and investigated the carbonation rate. We used a pH meter and a thermometer to check the rate of the carbonization. Also, we set the contents of fly ash with CFBC, $Ca(OH)_2$, flow and fluid of $CO_2$, respectively, to 100 g, 50 g, 100 ~ 1000 cc/min and 400 g based on the content of Free-CaO. We used carbonated water instead of water, and added an alkaline activator to promote the carbonation rate. As a result, the addition of the alkaline activator and carbonated water promoted the rate of carbonation via a hybrid reaction.

Application of nanofiltration membrane in the recovery of aluminum from alkaline sludge solutions

  • Cheng, Wen Po;Chi, Fung Hwa;Yu, Ruey Fang;Tian, Dun Ren
    • Advances in environmental research
    • /
    • v.5 no.2
    • /
    • pp.141-151
    • /
    • 2016
  • Large amounts of aluminum hydroxide ($Al(OH)_3$) exist in water purification sludge (WPS) because of the added aluminum coagulant in water treatment process. Notably, $Al(OH)_3$ is an amphoteric compound, can be dissolved in its basic condition using sodium hydroxide to form aluminate ions ($Al(OH)_4{^-}$). However, in a process in which pH is increasing, the humid acid can be dissolved easily from WPS and will inhibit the recovery and reuse of the dissolved aluminate ions. This study attempts to fix this problem by a novel approach to separate $Al(OH)_4{^-}$ ions using nanofiltration (NF) technology. Sludge impurity in a alkaline solution is retained by the NF membrane, such that the process recovers $Al(OH)_4{^-}$ ions, and significantly decreases the organic matter or heavy metal impurities in the permeate solution. The $Al(OH)_4{^-}$ ion is an alkaline substance. Experimental results confirm that a recovered coagulant of $Al(OH)_4{^-}$ ion can effectively remove kaolin particles from slightly acidic synthetic raw water.

Complexes of Alkaline Earth Metals with Organic Acids (알칼리토류 금속의 유기산 착물)

  • Choi, Sang Up;Kang, Hi Chun
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.354-360
    • /
    • 1972
  • Formation of the complexes of barium, strontium and calcium ions with dibasic organic acid ions in dilute solution was studied at room temperature, utilizing the equilibrium exchange technique which involved the uses of radioactive alkaline earth metal ions and cation excbange resin. The organic acids used in this study were succinic and tartaric acids, and the solvents used were water, 20 % acetone-water and 20 % ethanol-water. The pH of the solutions was controlled to 7.2∼7.4, and the ionic strength of the solutions was kept at approximately 0.1. The experimental results indicated that the alkaline earths formed one-to-one complexes in solution with the dibasic acids examined, and that the relative stabilities of the complexes increased in the order: $Ba^{++}; succinic

  • PDF

Highly Active Electrocatalyst based on Ultra-low Loading of Ruthenium Supported on Titanium Carbide for Alkaline Hydrogen Evolution Reaction

  • Junghwan, Kim;Sang-Mun, Jung;Kyu-Su, Kim;Sang-Hoon, You;Byung-Jo, Lee;Yong-Tae, Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.417-423
    • /
    • 2022
  • With the emerging importance of catalysts for water electrolysis, developing efficient and inexpensive electrocatalysts for water electrolysis plays a vital role in renewable hydrogen energy technology. In this study, a 1nm thickness of TiC-supported Ru catalyst for hydrogen evolution reaction (HER) has been successfully fabricated using an electron (E)-beam evaporator and thermal decomposition of gaseous CH4 in a furnace. The prepared Ru/TiC catalyst exhibited an outstanding performance for alkaline hydrogen evolution reaction with an overpotential of 55 mV at 10 mA cm-2. Furthermore, we demonstrated that the outstanding HER performance of Ru/TiC was attributed to the high surface area of the support and the metal-support interaction.

A Study on the Degradation Characteristics of EPN (EPN의 분해특성에 관한 연구)

  • 이용두;김현희;김창영
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1103-1108
    • /
    • 2002
  • In order to evaluate the degradation organophosphorus pesticide, EPN, in water environment, the effects of water temp.(10$^{circ}C,\;30^{\circ}C$), pH(3-11) and sunlight on its degradation were investigated during 10 days. The degradation rate of EPN(200 rpm) was faster at higher water temp. and higher pH, i.e., its degradation rate at pH 3, 5, 7, 9, 11 was 57, 63, 66, 69, 75%(1$0^{\circ}C$), and 70, 74, 79, 91, 97%(3$0^{\circ}C$) after 10 days, respectively. The effect of water temp. on its degradation was little in acidic condition, but was rather great in alkaline condition, with time. EPN was degraded fast at the alkaline condition by photolysis. At the condition of pH 11, EPN was degraded fast at the early stage in the first 2 days, but after that the degradation rate was weakened.

Exogenous proline mitigates the detrimental effects of saline and alkaline stresses in Leymus chinensis (Trin.)

  • Sun, Yan-Lin;Hong, Soon-Kwan
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.529-538
    • /
    • 2010
  • Proline accumulates in plants under environmental stresses including saline stress and alkaline stress. Here, we investigated the responses to two different stresses, saline stress (200 mM NaCl) and alkaline stress (100 mM $Na_2CO_3$) in two Leymus chinensis (Trin.) genotypes, LcWT07 and LcJS0107, and effects of exogenous proline on the activities of antioxidant enzymes. Both saline stress and alkaline stress significantly induced the accumulation of proline in leaves of the two genotypes after 96 h, and alkaline stress caused a transient and significant increase in LcJS0107 plants at 6 h. A reduction in the activities of catalase (CAT, EC 1.11.1.6) and ascorbate peroxidase (APX, EC 1.11.1.11), but not in the activity of superoxide dismutase (SOD, EC 1.15.1.1), was detected in plants exposed to saline and alkaline stresses. Remarkable decrease in relative water contents (RWC) was found in 144 h stressed plants. However, lipid peroxidation estimated by malonyldialdehyde (MDA) content in leaves remained relatively stable. With the addition of exogenous proline, it did not cause changes of proline levels in two genotypes, but combined with saline or alkaline stress, the exogenous application of proline significantly induced proline accumulation after even short treatment periods. Combined with salt stress, the exogenous application also increased the activities of CAT and APX. These results indicated that exogenous proline not only increases proline levels in vivo as a osmotic adjustment under stress, but mitigates the detrimental effects of saline and alkaline stresses by increasing the activities of antioxidant enzymes.

Lipase Treatment of Polyester Fabrics

  • Kim, Hye-Rim;Song, Wha-Soon
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.339-343
    • /
    • 2006
  • The aim of this paper is to improve moisture regain of PET fabrics using a lipase treatment. Effects of nine lipase sources, lipase activator and nonionic surfactant on moisture regain of PET fabrics are examined. Moisture regains of lipase-treated samples improve by two times in average compared with untreated and buffer-treated samples. Alkaline treatment creates larger pitting by more aggressive attack into fiber which is proved by SEM and water contact angle measurement. Moisture regain by alkaline treatment ($0.568%{\pm}0.08$) does not improve. However, lipase-treatment (L2 treatment) improves moisture regain up to 2.4 times ($1.272%{\pm}0.05$). Although lipase treatment is more moderate than alkaline treatment, lipase hydrolysis on PET fabrics improves moisture regain, efficiently. K/S values improved confirm that carboxyl and hydroxyl groups are produced on the surface of PET fabrics by lipase hydrolysis. Moisture regain and dyeability improve by lipase hydrolysis on PET fabrics.

Simultaneous Determination of Alkaline Earth Metal Ions by a Conventional High Performance Liquid Chromatographic System

  • Rho, Young-Soo;Choi, Seung-Gi
    • Archives of Pharmacal Research
    • /
    • v.9 no.4
    • /
    • pp.211-214
    • /
    • 1986
  • A simultaneous determination method of alkaline earth metals was attempted with the conventional high performance liquid chromatographic system. Four cations, namely, magnesium, calcium, strontium and barium ion, were injected directly as aqueous solution into an eluent containing copper chloride solution and and were successfully separated and determined on a separating column (Zipax SCX, 4.6 mm i.d. ${\times}25$ cm length, Du Pont, USA) by using a variable wavelength UV detector. The linear calibration curves were obtianed in the range from $1.0{\times}10^{-4}M$ to $5.0{\times}10^{-4}M$ and the correlation coefficient of the calibration curve for each metal of magnesium and calcium in tap water. Alkaline earth metals were determined with the conventional high performance liquid chromatographic system.

  • PDF