• Title/Summary/Keyword: alkaline stabilization

Search Result 32, Processing Time 0.024 seconds

Red Mud를 이용한 토양 및 슬러지내 중금속 제거 특성

  • 김이태;배우근;김우정;정원식
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.73-77
    • /
    • 2003
  • Red mud is a waste material formed during the production of alumina when the bauxite ore is subjected to caustic leaching. It is a brick-red colored highly alkaline (pH 10-12) sludge containing mostly oxides of iron, aluminum, titanium, and silica. Red mud, due to its high aluminum, iron, and calcium contents, has been suggested as a cheap adsorbent for removal of toxic metals (e.g., As, Cr, Pb, Cd) as well as for water or wastewater treatment. The basic advantage of red mud is its versatility in application. This study was conducted to evaluate the effect of red mud on stabilization and fixation of heavy metals (such as Pb, Cu, C $r^{6+}$, Cd, Zn) contained in the Al-coating sludge and soil. The results showed that the concentration of heavy metals leached from the treated sludge and soil was low, meeting the regulatory permit level.

  • PDF

Stabilization Performance Evaluation of Filter(pH) Using Ionic Water Generator (이온수기 필터(pH)의 안정화 성능평가)

  • Nam, Sangyep;Kwon, Yunjung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.199-205
    • /
    • 2015
  • This study is about ionic water generator filter Recently, a lot of people feel deep interest in health and drinking water. And there are various types of water. Ionic water generator is a system with special function, and can be classified as a medical device and should be manufactured after approval from the Food and Drug Administration. Basically ionized water is different from the packaged and stored water. When the tap water or ground water passes through the various filters of ionic water generator, it turns to the purified water of pH7 ~ 7.5 and we can electrolyze that water into anion and cation by diaphragm. And in negative electrode side, we can get alkaline water with calcium ($Ca^+$), potassium ($K^+$), magnesium ($Mg^+$), sodium ($Na^+$) for body. In general, we can change pH value from 5 to 9 of ionizer by controlling the level of electrolysis voltage in the ionizer. In general, 1stage (pH8), 2stage (pH8.5), 3stage (pH9), 4stage (pH9.5) are used as the alkaline ionized water, -1Stage (pH6.0), -2 stage (pH5.0) are used as the acidic water. But in early stage, the water that passed through filter was weakly alkaline water and that was problem. Therefore, when filter condition is stable, the pH and ORP value of water is different with the early one. the initial setting pH value of the ionizer was confirmed that changes significantly. In order to resolve this problem we need to wash filter for some period time and neutralize by acidification treatment of the filter.

Optimum Dosage of Quicklime to Livestock Wastes in Organic Fertilizer Process (축산분뇨의 유기질 비료화에 미치는 생석회 주입량의 영향)

  • Kim,Jeong-Bae;Park,Jeong-Im
    • Journal of Environmental Science International
    • /
    • v.10 no.5
    • /
    • pp.365-371
    • /
    • 2001
  • The optimum dosage of quicklime in producing organic fertilizer using livestock wastes vith a greater than 80% water content was analysed. After one day had elapsed to allow for the organic fentilizer to dry, the quicklime dosage and the composition of the organic fertilizer were analysed. Any from done to the organic fertilizer was also assessed. The amount of the quicklime required to stabilize livestock wastes was determined by water content of livestock wastes. For J farm(slurry style) of which livestock wastes have 94.6% of water concentration, less than 3% of total amount of livestock wastes, for H farm (scraper style) of which livestock wastes have 85% of water concentration, less then 4% of total livestock wastes and Y farm(traditional style) of which livestock wastes have 80% of water concentration, less then 5% of total livestock wastes. Generally, in order to pack the organic fertilizer, water containing quicklime0stabilized livestock wastes should be less than 35%. It takes 9 days to keep this water content for the wastes from H and Y farms(less than 85% in water content), and 12 days for the wastes from J (94.6% in water content). According to the classification standard for compost constitution by Higgins, the crude fertilizers from all 3 farms had high grade $K_2O$ and CaO, the middle grade T-N and middle or low grade $P_2O_5$. Stabilization by quicklime is known to inhibit bacterial decomposition of organic matter and the activity of pathogenic organisms. In this study, more then 99.99% of coliform group, fecal group and viable cell count were reduced. Our results indicate that livestock wastes of greater 80% water content could be used to produce organic fertilizer without the addition of a material for moisture control.

  • PDF

Stabilization of Heavy Metal and CO2 Sequestration in Industrial Solid Waste Incineration Ash by Accelerated Carbonation (산업폐기물의 가속 탄산화법을 이용한 CO2 고용화 및 중금속 안정화 특성 연구)

  • Jung, Seong-Myung;Nam, Seong-Young;Um, Nam-Il;Seo, Joobeom;Yoo, Kwang-Suk;Ohm, Tae-In;Ahn, Ji-Whan
    • Mineral and Industry
    • /
    • v.26
    • /
    • pp.1-12
    • /
    • 2013
  • In this study, an accelerated carbonation process was applied to stabilize hazardous heavy metals of industrial solid waste incineration (ISWI) bottom ash and fly ash, and to reduce $CO_2$ emissions. The most commonly used method to stabilize heavy metals is accelerated carbonation using a high water-to-solid ratio including oxidation and carbonation reactions as well as neutralization of the pH, dissolution, and precipitation and sorption. This process has been recognized as having a significant effect on the leaching of heavy metals in alkaline materials such as ISWI ash. The accelerated carbonation process with $CO_2$ absorption was investigated to confirm the leaching behavior of heavy metals contained in ISWI ash including fly and bottom ash. Only the temperature of the chamber at atmospheric pressure was varied and the $CO_2$ concentration was kept constant at 99% while the water-to-solid ratio (L/S) was set at 0.3 and $3.0dm^3/kg$. In the result, the concentration of leached heavy metals and pH value decreased with increasing carbonation reaction time whereas the bottom ash showed no effect. The mechanism of heavy metal-stabilization is supported by two findings during the carbonation reaction. First, the carbonation reaction is sufficient to decrease the pH and to form an insoluble heavy metal-material that contributes to a reduction of the leaching. Second, the adsorbent compound in the bottom ash controls the leaching of heavy metals; the calcite formed by the carbonation reaction has high affinity of heavy metals. In addition, approximately 5 kg/ton and 27 kg/ton $CO_2$ were sequestrated in ISWI bottom ash and fly ash after the carbonation reaction, respectively.

  • PDF

In-situ Stabilization of Heavy Metal Contaminated Farmland Soils Near Abandoned Mine, using Various Stabilizing Agents: Column Test Study (폐광산 주변 중금속 오염 농경지 토양복원을 위한 다양한 첨가제의 안정화 효율 비교: 컬럼시험연구)

  • Lee, Sang-Hoon;Cho, Jung-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.4
    • /
    • pp.45-53
    • /
    • 2009
  • This study concerned remediation of heavy metal contaminated farmland soils near abandoned mine, using stabilization method, with particular emphasis on the remediating the soils contaminated with multi-elements. In this study, stabilizing heavy metals based on 'In-situ chemical fixation' has been applied to the soil collected from an abandoned mine in Korea, using column test, with various stabilizing agents, including $FeSO_4$, $KMnO_4$, sludge (collected from coal mine drainage treatment pond), zero-valent iron (ZVI), zeolite and $CaCO_3$. Sixty five-days operation of the flow-through columns yield $FeSO_4\;+\;KMnO_4$ and zeolite are efficient on reducing As leaching from the soil. ZVI and sludge are reducing the leaching of Cu. Although $FeSO_4\;+\;KMnO_4$ seem to be efficient for most heavy metals, high pH in the initial stage of test enabled high leaching of the heavy metals, whereas fixation of the heavy metals maintain throughout the rest of the test period, with increasing pH up to around 6. Addition of some alkaline agent may inhibit the low pH during the application. The column test was also run as two set: one set incubated with deionized water for 72 hours prior to starting the test, and the other without incubation. The incubated set demonstrated better stabilizing efficiency, indicating the potential optimized operation method.

Immobilization and Stability of Lipase from Mucor racemosus NRRL 3631

  • Adham, Nehad Zaki;Ahmed, Hanan Mostafa;Naim, Nadia
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.332-339
    • /
    • 2010
  • The lipase from Mucor racemosus NRRL 3631 was partially purified by fractional precipitation using 60% ammonium sulfate, which resulted in a 8.33-fold purification. The partially purified lipase was then immobilized using different immobilization techniques: physical adsorption, ionic binding, and entrapment. Entrapment in a 4% agar proved to be the most suitable technique (82% yield), as the immobilized lipase was more stable at acidic and alkaline pHs than the free enzyme, plus 100% of the original activity was retained owing to the thermal stability of the immobilized enzyme after heat treatment for 60 min at $45^{\circ}C$. The calculated half-lives (472.5, 433.12, and 268.5 min at 50, 55, and $60^{\circ}C$, respectively) and the activation energy (9.85 kcal/mol) for the immobilized enzyme were higher than those for the free enzyme. Under the selected conditions, the immobilized enzyme had a higher $K_m$ (11.11 mM) and lower $V_{max}$ (105.26 U/mg protein) when compared with the free enzyme (8.33 mM and 125.0 U/mg protein, respectively). The operational stability of the biocatalyst was tested for both the hydrolysis of triglycerides and esterification of fatty acids with glycerol. After 4 cycles, the immobilized lipase retained approximately 50% and 80% of its original activity in the hydrolysis and esterification reactions, respectively.

Mutational Analysis of Two Conserved Active Site Tyrosine Residues in Matrilysin

  • Jaeho Cha
    • Journal of Life Science
    • /
    • v.9 no.2
    • /
    • pp.44-48
    • /
    • 1999
  • The ionization of tyrosine residue is known to be involved in the stabilization of transition-state in catalysis of astacin based upon the astacin-transition state analog structure. Two tyrosine residues, Tyr-216 and Tyr-219, are conserved in all MMPs related with astacin family, We replaced Tyr-216 and Tyr-219 into phenylalanine, respectively and the zinc binding properties, kinetic parameters, and pH dependence of each mutant are determined in order to examine the role of tyrosine residue in matrilysin catalysis. Both mutants contain two zinc atoms per mol of enzyme, indicating that either tyrosime does not affect the zinc binding property of the enzyme. Y216F and Y219F mutants are highly active and the kcat/Km values are only decreased 1.1-1.5-fold compared to the wild-type enzyme. The decrease in the activity of the mutants is essentially due to the increase in Km value. The pH dependencies of the kcat/Km values for both mutants are similar to the corresponding dependencies obtained with the wild type enzyme. The pKa values at the alkaline side of both mutants are not changed. These kinetic and pH dependence results indicate that the ionization of active site tyrosine residue of matrilysin is not reflected in the kinetics of peptide hydrolysin as catalyzed by astacin.

Characteristics of Acid Fermentation and Alkali Pretreatment of Organic Wastes (유기성 폐기물의 산발효 특성 및 알카리 전처리에 관한 연구)

  • 박종안;허준무
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.1
    • /
    • pp.108-116
    • /
    • 2001
  • It is difficult to task to achieve high biological nutrient removal from municipal wastewater because of low organic content. Volatile fatty acids(VFAs) produced from acid fermentation of food wastes can be utilized as external carbon sources for the biological nutrient process. Significant reduction and stabilization of the food wastes can also be obtained from the acid fermentation. The objective of this study is to evaluate characteristics of acid fermentation of the food wastes. Results obtained from the batch experiment of various organic wastes showed that the food wastes had high potential to be used as an external carbon source because of the largest production of the VFAs with low nitrogen and phosphorus content. The fish waste was found to be the next possible organic waste, while the others such as radish cabbage and molasses waste showed high VFAs consumption potential as a results of high nitrogen and phosphorus content. alkaline hydrolysis of the food waste was carried out using NaOH prior to the acid fermentation. As the alkali addition increased, solubilization of the organics as well as TSS reduction increased. However, fraction of soluble COD to total COD became stable after a sharp increase. Alkali addition greater than 0.5g NaOH per g TS resulted in significant increase in pH.

  • PDF

Microbial Amelioration of Acid Mine Drainage Impaired Soil using the Bacterial Consortia of Klebsiella sp. and Raoultella sp.

  • Park, Seon Yeong;Lee, Gi Won;Kim, Chang Gyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.1
    • /
    • pp.34-44
    • /
    • 2021
  • Acid mine drainage (AMD) resulting from pyrite oxidation in mining areas, subsequently leads to soil acidification accompanied by lowering pH and high concentration of metals and metalloids in its surrounding environment. Regarding to this, the microbial amelioration has been considered as a promising option for a more cost-effective and eco-friendlier countermeasure, compared to the use of alkaline chemicals. This study was aimed to evaluate influencing factors in microbially-mediated amelioration of acidic soil spiked by simulated AMD. For this, microcosm experiments were conducted by acid-neutralizing bacterial consortium (dominated by Klebsiella sp. and Raoultella sp.) under the various conditions of AMD spikes (0-2,500 mg SO42-/L), together with acidic mine soil (0-100 g) or sphagnum peat (0-5 g) in the 200 mL of nutrient medium. The employed bacterial consortium, capable of resisting to high level of sulfate concentration (up to 1,500 mg SO42-/L) in low pH, generated the ammonium while concomitantly reduced the sulfate, subsequently contributing to the effective soil stabilization with an evolution of soil pH up to neutral. Furthermore, it demonstrates that suitable condition has to be tuned for successful microbial metabolism to facilitate with neutralization during practical application.

A Study on Desalination Methods for Application of Outdoor Iron Artefacts (옥외 철제문화재 적용을 위한 탈염처리 방법 연구)

  • Lee, Hye-Youn;Cho, Nam-Chul;Kim, Woo-Hyun
    • Journal of Conservation Science
    • /
    • v.25 no.1
    • /
    • pp.49-60
    • /
    • 2009
  • Outdoor iron artefacts are easily corroded by salts, especially $Cl^-$ion, from environmental pollutants and acid rain because of their location, so that they need conservational treatments such as stabilization. However the conservation of outdoor iron artefacts are limited to be consolidated for the present and there are a few the studies for the desalinization. The general desalinization method is that objects are immersed in reagent such as alkaline corrosion inhibiting solutions targeting on buried iron artefacts, thus they are not available for outdoor iron artefacts. In this study, concerning those difficulties, the different desalting method is experimented that materials soaked in alkaline solutions attach to objects and they are packed by waterproof to avoid evaporation. This paper experiment burial iron artefacts at first in order to fine out an adaptable method for outdoor iron artefacts. The soaking materials are Korean traditional paper, gauze, cotton wipers, spill pads and the desalting regent is NaOH 0.1M. Additionally the exiting desalinization method which is to immerse objects in solution is performed to compare. The analyses are microscopes, SEM-EDS, X-ray diffraction, pH meter and Ion chromatography. The result is that spill pads show the best desalting effect out of other materials similar to immersing desalting method.

  • PDF