• 제목/요약/키워드: alkaline hydrolysis

검색결과 247건 처리시간 0.029초

Effects of Commercial Nitrilase Hydrolysis on Acrylic Fabrics

  • Kim, Hye Rim;Seo, Hye Young
    • 한국의류산업학회지
    • /
    • 제18권6호
    • /
    • pp.889-896
    • /
    • 2016
  • This study aims to evaluate the hydrolytic activity of a commercial nitrilase and optimize nitrilase treatment conditions to apply eco-friendly finishing on acrylic fabrics. To assess the possibility of hydrolyzing nitrile bonds in acrylic fabric using a commercial nitrilase, the amounts of hydrolysis products, ammonia and carboxylate ions, were measured. The treatment conditions were optimized via the amount of ammonia. The formation of carboxylate ions on the fabric surface was detected by X-ray photoelectron spectroscopy and wettability measurements. After nitrilase treatment, ammonia was detected in the treatment liquid; thus, nitrilase hydrolyzed the nitrile bonds in acrylic woven fabric. The largest amount of ammonia was released into the treatment liquid under the following conditions: pH 8.0, $40^{\circ}C$, and a treatment time of 5 h. The formation of carboxylate ions on the acrylic woven fabric surface by nitrilase hydrolysis was proven by the increased O1s content measuring of XPS analysis. From comparison of the results of nitrilase and alkaline hydrolysis, the white index and strength of the alkali-hydrolyzed acrylic fabric decreased, whereas those of the nitrilase-hydrolyzed samples were maintained. The nitrilase hydrolysis improved the sensitivity of acrylic fabrics to basic dye similarly to alkaline hydrolysis without the drawbacks of yellowing and decreased strength caused by alkaline hydrolysis.

디니트로티오펜계 분산염료인 C. I. Disperse Green 9의 알칼리 가수분해 반응속도 및 반응메카니즘 (Kinetics and Mechanism for Alkaline Hydrolysis of Dinitrothiophene Disperse Dye(C. I. Disperse Green 9))

  • 박건용;김재현
    • 한국염색가공학회지
    • /
    • 제19권4호
    • /
    • pp.18-25
    • /
    • 2007
  • Kinetics and mechanism for alkaline hydrolysis of C. I. Disperse Green 9(G-9) of dinitrothiophene disperse dye were investigated. As soon as G-9 contacted with alkali, instant and continuous decreases of color strength of G-9 followed with increasing time. The hydrolysis rate of G-9 increased with increasing alkali, and it was found that alkali appeared first order dependence. The observed rate constants obtained from hydrolysis of various amount of dye were similar values, and calculation of initial rates showed that G-9 hydrolyzed by first order reaction for dye. Therefore it was confirmed that the overall reaction was second order, $SN_2$ of nucleophilic substitution reaction. Increasing temperature enhanced the hydrolysis of G-9. From the results of hydrolysis performed at various temperatures, it was obtained that activation energy(Ea) was 12.6 kcal/mole, enthalpy of reaction(${\triangle}H$) was 12.0 kcal/mole, and entropy of reaction(${\triangle}S$) was $29.8J/mol{\cdot}K$.

식품의 아미노산 정량을 위한 단일가수분해 방법의 개발 (Single Hydrolysis Method for the Amino Acid Determination in Foods and Composite Dishes)

  • 박내선
    • 한국식품영양과학회지
    • /
    • 제26권3호
    • /
    • pp.422-429
    • /
    • 1997
  • For the complete and accurate amino acid determination of protein and food samples, 3 different hydrolysis procedures have been conducted in parallel for each sample, which include the alkaline hydrolysis for tryptophan determination, performic acid oxidation prior to the acid hydrolysis for the determination of cysteine and cystine, and the 6N HCl hydrolysis for the determination of the rest of amino acids. In the present study, amino acid concentrations obtained from the modified single hydrolysis procedure were compared with the values from the conventional hydrolysis procedures in casein and nine food and composite dish samples. In most of the samples tested, the modified single hydrolysis procedure gave significantly higher values of cysteins and cystein compared to the performic acid oxidation method, but resulted in a considerable destruction of tryptophan in food and composited dish samples. There was no consistent difference in the rest of amino acid concentrations between the two hydrolysis systems. Therefore, for complete amino acid determination of various foods and composite dishes, the single hydrolysis method may replace the 6N HCl hydrolysis and performic acid oxidation methods, and thereby reduces 3 hydrolyses to 2 steps with much higher recoveries of the sulfur containing amino acids.

  • PDF

Lipase Treatment of Polyester Fabrics

  • Kim, Hye-Rim;Song, Wha-Soon
    • Fibers and Polymers
    • /
    • 제7권4호
    • /
    • pp.339-343
    • /
    • 2006
  • The aim of this paper is to improve moisture regain of PET fabrics using a lipase treatment. Effects of nine lipase sources, lipase activator and nonionic surfactant on moisture regain of PET fabrics are examined. Moisture regains of lipase-treated samples improve by two times in average compared with untreated and buffer-treated samples. Alkaline treatment creates larger pitting by more aggressive attack into fiber which is proved by SEM and water contact angle measurement. Moisture regain by alkaline treatment ($0.568%{\pm}0.08$) does not improve. However, lipase-treatment (L2 treatment) improves moisture regain up to 2.4 times ($1.272%{\pm}0.05$). Although lipase treatment is more moderate than alkaline treatment, lipase hydrolysis on PET fabrics improves moisture regain, efficiently. K/S values improved confirm that carboxyl and hydroxyl groups are produced on the surface of PET fabrics by lipase hydrolysis. Moisture regain and dyeability improve by lipase hydrolysis on PET fabrics.

Chain orientation and Degradation Behavior of Poly[(R)-3-hydroxybutyrate] Lamellar Crystals

  • 이원기;조남주;하창식
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권8호
    • /
    • pp.872-876
    • /
    • 2001
  • Topological changes caused by the alkaline and enzymatic attacks of solution-grown, chain-folded lamellar crystals (SGCs) of poly[(R)-3-hydroxybutyrate] P(3HB) have been studied in order to investigate the chain-folding structure in P(3HB) crystal regions. NaOH and an extracellular PHB depolymerase purified from Alcaligenes faecalis T1 were used for alkaline and enzymatic hydrolysis, respectively. The measurements were performed on crystals attached to a substrate which is inactive to degradation mediums. Both alkaline and enzymatic attacks lead to a breakup of the lamellar crystals along the crystallographic b-axis during initial erosion. Since hydrolysis preferentially occurs in amorphous regions, this morphological result reflects relatively loosely packed chains in core parts of lamellar crystals. Additionally, it was supported by the ridge formation along the b-axis in the lamellar crystals after thermal treatment at a low temperature because of the thermally sensitive nature of the loosely packed chains in lamellar crystals. However, the alkaline hydrolysis accompanied the chain erosions or scissions in quasi-regular folded lamellar surfaces due to smaller size of alkaline ions in comparison to the enzyme, resulting in the decrease of molecular weight.

Alkaline Inducing Agent 및 Alkaline Proteolytic Enzyme 혼용처리에 의한 Shaving Scraps 가수분해 단백질의 제조 및 특성 (Preparation and Characterization of the Hydrolyzed Protein from Shaving Scraps of Leather Waste Containing Chromium by the Combination Treatment with Alkaline Inducing Agent and Alkaline Proteolytic Enzyme)

  • 김원주;조주식;이홍재;허종수
    • 유기물자원화
    • /
    • 제6권1호
    • /
    • pp.1-12
    • /
    • 1998
  • 피혁제조시 발생되는 크롬을 함유한 피혁 고형폐기물인 shaving scrap의 단백질 자원화 가능성을 검토하기 위하여 MgO를 기본으로 하여 alkaline inducing agents 및 alkaline proteolytic enzymes을 혼용처리하여 shaving scrap으로 부터 회수한 가수분해 단백질의 용해도, 무기성분 함량, 분자량분포 등을 비교 검토함으로서 최적 가수분해 조건 및 액체비료의 원료로 활용하기 위한 저분자 단백질의 회수방안을 조사한 결과는 다음과 같다. Alkaline inducing agents의 혼용처리에 의한 shaving scrap의 가수분해 실험결과 7% MgO를 기본으로 하여 alkaline inducing agents 종류에 따라 65~85% 범위로 용해도 차이가 뚜렷하였으며, 가수분해되는 정도는 NaOH>$Ca(OH)_2$>KOH순으로 나타났으며, 획득된 hydrolyzed protein의 평균분자량은 NaOH처리시 약 10 KD, $Ca(OH)_2$ 처리시 약 40 KD, KOH처리시 약 80 KD이었으며, 크롬함유량은 약 15 ppm이었다. Alkaline proteolytic enzymes의 혼용처리에 의한 shaving scrap의 가수분해 실험결과 alkaline proteolytic enzymes 종류에 따라 Alcalase>Esperase>Savinase순으로 용해도 차이를 보였으며, 0.5% Alcalase의 처리에 의해 용해도 85%수준, 평균분자량 1 KD 미만, 크롬 함유량 10ppm 이하인 저분자 형태의 hydrolyzed protein을 획득할 수 있었다.

  • PDF

가수분해에 의한 2, 4, 6-Trinitrotoluene(TNT) 처리 (2, 4, 6-Trinitrotoluene(TNT) Treatment by the Alkaline Hydrolysis)

  • 권범근;김종오
    • 한국지반환경공학회 논문집
    • /
    • 제13권9호
    • /
    • pp.69-74
    • /
    • 2012
  • 본 연구에서는 염기성 수산화이온을 이용한 TNT의 분해 특성을 조사하였다. 이를 위해 TNT 처리 시 분광학적인 변화 특성을 관찰하고, pH 영향 및 반응생성물에 대해 정량적으로 조사하였다. 실험결과, pH=12에서 가수분해에 의해 TNT 수용액이 갈색을 띄는 파장 400-600nm 범위 내에서 흡광도가 증가함을 관찰하였다. 수용액 상의 pH=12에서 TNT 가수분해 시 pseudofirst-order 속도상수는 $0.0022min^{-1}$으로 나타났으며, 그 반응속도는 매우 느린 것으로 초기 TNT 농도인 $44{\mu}M$이 약 90% 정도 분해되려면 약 1,047min(17.44hrs)이 소요될 것으로 예상되었다. 반응 생성물로는 아질산이온과 포름산이 주로 생성되며, 기타 미량 성분으로 질산이온, 옥살산 등이 확인되었다.

Kinetics and Mechanism of Alkaline Hydrolysis of [(Methoxy)(p-substituted styryl)-carbene] Pentacarbonyl Chromium(0) Complexes in Aqueous Acetonitrile

  • Shin, Gap-Cheol;Hwang, Jae-Young;Yang, Ki-Yull;Koo, In-Sun;Lee, Ik-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권12호
    • /
    • pp.1981-1985
    • /
    • 2005
  • Kinetic studies have been performed for alkaline hydrolysis of a series of [(methoxy)(p-substituted styryl)carbene]pentacarbonyl chromium(0) complexes ($(CO)_5$Cr=$C(OCH_3)CH=CHC_6H_4X$, X = p-$OCH_3$, p-$CH_3$, H, p-Cl, p-$NO_2$). Second-order rate constants $(k_{{OH}^-})$ for the alkaline hydrolysis in 50% acetonitrile-water(v/v) were determined spectrophotometrically at various temperatures. At a low pH region (pH < 7.5), the observed rate constant $(k_{obs})$ remained constant with a small value, while in a high pH region (pH > 9.5), $k_{obs}$ increases linearly with increasing the pH of the medium. The second-order rate constants $(k_{{OH}^-})$ increase as the substituent X changes from a strong electron donating group to a strong electron withdrawing group. The Hammett plot obtained for the alkaline hydrolysis is consisted of two intersecting straight lines. The nonlinear Hammett plot might be interpreted as a change in the rate-determining step. However, the fact that the corresponding Yukawa-Tsuno plot is linear with $\rho$ and r values of 0.71 and 1.14, respectively indicates that the nonlinear Hammett plot is not due to a change in the rate-determing step but is due to ground-state stabilization through resonance interaction. The positive $\rho$ value suggests that nucleophilic attack by $OH^-$ to form a tetrahedral addition intermediate is the rate-determining step. The large negative ${\Delta}S^\neq$ value determined in the present system is consistent with the proposed mechanism.