• Title/Summary/Keyword: alkaline amylase

Search Result 82, Processing Time 0.026 seconds

Isolation of Alkaline Amylase-Producing Bacillus sp. and Some Properties of Its Crude Enzyme (알칼리성 아밀라아제를 생산하는 Bacillus속 미생물의 분리와 그 조효소의 특성)

  • Shin, Yong-Chul;Kim, Tae-Un;Lee, Sang-Yeol;Byun, Si-Myung
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.349-354
    • /
    • 1991
  • An alkaline amylase-producing Bacillus sp. GM8901 was isolated and some properties of crude enzyme extract were examined. The microbiological and biochemical characteristics of GM8901 were very similar to those of B. licheniformis. The optimal temperature and pH for the cell growth and amylase production were $50^{\circ}C$ and pH 10.5. The crude amylase extract showed that the optimal temperature and pH were $50{\sim}60^{\circ}C\;and\;pH\;10{\sim}12$, respectively, and that the activity of amylase was stable up to $50^{\circ}C$ and in the range of $pH\;3{\sim}12$.

  • PDF

Multiple Chromosomal Integration of a Bacillus Ya-B Alkaline Elastase Gene (고초균(Bacillus) 염색체상에서 외래 유전자 Alkaline Elastase Gene의 증폭)

  • 김병문;정봉현
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.5
    • /
    • pp.544-549
    • /
    • 1995
  • The alkaline elastase is an extracellular serine protease of the alkalophilic Bacillus strain Ya-B. To increase the gene copy number and the production level of the alkaline elastase Ya-B, we designed, on the B. subtilis chromosome, a gene amplification of the 10.6 kb repeating unit containing amyE, aleE (alkaline elastase Ya-B gene) and tmrB. The aleE was inserted between amyE and tmrB, and B. subtilis APT119 strain was transformed with this amyE-aleE-tmrB-junction region fragment. As a result, we succeeded in obtaining tunicamycin-resistant (Tm$^{r}$) transformants (Tf-1, Tf-2) in which the designed gene amplification of 10.6 kb occurred in chromosome. The transformants showed high productivity of $\alpha $-amylase and alkaline elastase Ya-B. The copy number of the repeating unit (amyE-aleE-tmrB) was estimated to be 25, but plasmid vector (pUC19) was not integrated. The amplified aleE of chromosome was more stable than that of plasmid in absence of antibiotics.

  • PDF

Alteration of Carbohydrate Metabolism in Rice Seedlings under Low Temperature (저온 처리한 벼 유식물에서 탄수화물 대사의 변화)

  • 홍순복
    • Journal of Plant Biology
    • /
    • v.34 no.2
    • /
    • pp.113-119
    • /
    • 1991
  • The contents of reducing sugar, sucrose, starch and fructose-2,6-bisphosphate (F-Z,$6-P_2$) in relation to the activities of amylase, invertase and fructose-1,6-bisphosphatase (FBPase) were investigated from the leaves of rice (Oryza sativa L. cv. Samjin) seedlings grown at $4^{\circ}C$ for 3 days_ In the seedlings, the contents of reducing sugar and sucrose were increased, but soluble and insoluble starch were declined. Under this condition, amylase activity was increased. but acid invertase activity was declined and alkaline invertase activity was not changed. Cytosolic and stromal FBPase activities were increased. But F-2,$6-P_2$ content was declined. It seemed that the increase of reducing sugar content might be due to the increased activity of amylase and the increase of sucrose content might be related to the increased activity of cytosolic FBPase, reduced content of F-Z,$6-P_2$ and reduced rate of hydrolysis of sucrose during the cold treatment. These results suggested that the changes in carbohydrate rnetabolim of rice seedlings under low temperature reflect one of the protection mechanism to the low temperature during the cold treatment.atment.

  • PDF

Physiological properties and transformation of alkaline-tolerant bacteria (알카리내성 세균의 생리적 특성 및 형질전환)

  • 유주현;정용준;정건섭;오두환
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.3
    • /
    • pp.239-244
    • /
    • 1986
  • To develop the potential use as new host strain for gene cloning, alkaline-tolerant isolates from soil were examined for amylase activity, protease activity, antimicrobial activity and transformability by using plasmid pUB 110. Of these strains, one was selected and identified as Bacillus sp. YA-14. in the enzymatic properties of Bacillus sp. YA-14 the optimal conditions for the reaction of amylase and protease were at pH 0.8 and pH 7.5 respectively. The antimicrobial activity of Bacillus sp. YA-14 was also found. For the transformation, Bacillus sp. YA-14 was cultured to late logarithmic growth phase ai 37$^{\circ}C$ in modified SPI medium (pH 8.0) containing 0.4% MgSO$_4$. The presence of pUB 110 plasmid DNA in transformants was confirmed by electrophoresis and stably maintained in the new host.

  • PDF

Effects of Raw Materials and Various Molds on the Production of Koji

  • Yi, Sang-Duk;Yang, Jae-Seung;Lee, Gyu-Hee;Park, Seong-Hyun;Oh, Man-Jin
    • Preventive Nutrition and Food Science
    • /
    • v.6 no.2
    • /
    • pp.101-106
    • /
    • 2001
  • Alpha-amylase and glucoamylase activities were higher in koji with 40% water than that with 30 and 50% water, and A. oryzae exhibited very high alpha-amylase and glucoamylase activities compared to A. sojae and A. niger. Acidic, neutral and alkaline protease activities also showed higher activities in koji prepared with flour, Korean wheat powder and soybean powder with 40% water based on the weight of the sample. Alpha-amylase, acidic, neutral and alkaline protease activities of all the koji samples according to incubation periods increased until 3~4 days of incubation and maintained nearly the same level or slightly decreased after 5 days of incubation. The protease activities of A. oryzae and A. sojae showed nearly the same trend regardless of differences in substrate conditions and koji materials, but those of A. niger showed a lower activity than those of A. oryzae and A. sojae. These results suggest that the preparation of koji is possible with Korean wheat powder and soybean powder and A. sojae can be utilized as a new strain for fermented foods using soybean as the main materials to increase functional properties and produce products having a new taste and flavor.

  • PDF

Purification and Characterization of Alkali-resistant Amylases from Pseudomonas sp. (Pseudomonas sp.로부터 알칼리내성 amylase의 정제 및 특성 확인)

  • Lee, Jeong-Eun;Jhon, Deok-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.70-75
    • /
    • 2008
  • Two extracellular amylase isozymes were purified and characterized from alkalophilic Pseudomonas sp. KFCC 10818 for the production of maltooligosaccharides. The molecular weights of the homogeneous proteins were 50 kDa and 75 kDa, respectively. The 50 and 75 kDa amylases showed optimum temperatures at 35 and $40^{\circ}C$, respectively. The optimum pH of the enzymes ranged from pH 6-8, and the enzymes were resistant to an alkaline condition of pH 12. Via the enzyme's actions, the final products from maltooligosaccharides or soluble starch were maltose and maltotriose. Calcium was a potent activator of the 50 kDa amylase. Finally, the N-terminal amino acid sequences of the 50 and 75 kDa amylases were QTVPKTTFV and DTVPGNAFQ, respectively.

Microbiological Studies on the Rice Makkulli (Part 1) Utilization of Rice Makkulli Koji with the Isolated Strain M-80 (쌀막걸리의 미생물학적 연구 (제1보) 분리균주 M-80의 쌀막걸리 제국용으로서의 이용성)

  • 조용학;성낙계;정덕화;윤한대
    • Microbiology and Biotechnology Letters
    • /
    • v.7 no.4
    • /
    • pp.217-223
    • /
    • 1979
  • Six strains of mold which had high saccharifying and acid-productive ability were isolated from wild sources. The strain M-80 among them and Aspergillus kawachii, which was generally used as rice makkulli koji were used for this studies. The results obtained were summarized as follows. 1) $\alpha$-amylase activities of the strain M-80 and Asp, kawachii showed similarly as about 140W. V., while $\beta$-amylase activity of M-80 was 54 A. U. and Asp. kawachii was 40 A. U. 2) Acid protease activity of M-80 was higher then Asp. kawachii but alkaline protease activity was lower Asp. kawachii respectively. 3) The contents of total acid, ethanol and fusel oil in makkulli brewing with M-80 were higher those of Asp. kawachii and methanol contents of the tested two strains were about 33mg/%. 4) Fifteen kinds of free amino acid were detected from makkulli brewing of two strains, and free amino acid contents of M-80 were 10% higher than those of Asp. kawachii.

  • PDF

Digestive Enzymatic and Nucleic Acidic Responses of Olive Flounder Paralichthys oilivaceus Larvae Fed Cyclopoid Copepod Paracyclopina nana (기수산 Cyclopoid 요각류 Paracyclopina nana를 섭취한 넙치 Paralichthys olivaceus 자어의 핵산 함량과 소화효소적 반응)

  • Kwon, O-Nam;Lee, Kyun-Woo;Kim, Gun-Up;Park, Heum-Gi
    • Journal of Aquaculture
    • /
    • v.21 no.3
    • /
    • pp.190-195
    • /
    • 2008
  • We investigated the changes in growth, digestive enzymes activities, nucleic acids contents and RNA/DNA ratio of flounder Paralichthys olivaceus larvae (C for Paracyclopina nana, A for Artemia, and M for Mix of C and A) for 14 to 28 DAH. Body length of flounder larvae showed the best in the C trial at 28 DAH. The change of nucleic acids contents showed faster in C and M trials than A trial. And RNA/DNA ratio showed the significantly faster changes in C trial than A trial. High metamorphosis rates were also observed in C and M trial. $\alpha$-amylase activities increased gradually up to 28 DAH in all trials. Total alkaline protease (TAP) activities of A trial showed the highest value to 9 mU/larvae at 26 DAH. But others trials showed lower to $5{\sim}6$ mU/larva than A trial. TAP:$\alpha$-amylase activity ratio did not significantly changed to $0.025{\sim}0.053$ in A trial during the experiments. But, C and M trials tended to gradually decrease from $0.078{\sim}0.083$ (initial) to $0.013{\sim}0.018$ (final). Therefore, it shown the ratio gradually decreased of TAP:$\alpha$-amylase activity, stability of TAP activity, and rapid change of nucleic acids in trials grown positively. Thus, because P. nana could continuously supply the optimal nutrients for flounder larvae, we suggested the supplement of the copepod to an efficient feed of the flounder larvae.

Effect of Red Ginseng Residue on Various Enzyme Production of Alcohol Fermentation Koji (인삼백 첨가가 알콜발효용균의효소생성에 미치는 영향)

  • Kim, Sang-Dal;Do, Jae-Ho;Lee, Jong-Cheol
    • Journal of Ginseng Research
    • /
    • v.6 no.2
    • /
    • pp.131-137
    • /
    • 1982
  • The effect of red ginseng residue on the several enzyme activities of the koji and alcohol fermentation were investigated. The koji showed maximum values of amylase and cellulase activity when it was prepared by 30% red ginseng residue and 70% wheat bran, and of protease activity when it was prepared by 40% red ginseng residue and 60% wheat bran-${\alpha}$ amylase activity of the koji during its fermentation was increased rapidly until 4 days and there after it was increased slowly, but ${\beta}$-amylase was rapidly increased after 3 days fermentation. During the preparation of the koji, the acidic, neutral protease and cellulase activities showed the maximum value after 3 days fermentation and the alkaline protease showed the maximum value within 4-6 days fermentation. On the otherhand, fermented broth, containing 6%(v/v) alcohol, could be obtained when the substrate was saccharified by the koji, based on 25% red ginseng residue and 75% wheat bran, prior to alcohol fermentation.

  • PDF

Studies on Improved Amylases Developed by Protoplast Fusion of Aspergillus species

  • Adeleye, Tolulope Modupe;Kareem, Sharafadeen Olateju;Olufunmilayo, Bankole Mobolaji;Atanda, Olusegun;Osho, Michael Bamitale;Dairo, Olawale
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.1
    • /
    • pp.45-56
    • /
    • 2021
  • Improved amylases were developed from protoplast fusants of two amylase-producing Aspergillus species. Twenty regenerated fusants were screened for amylase production using Remazol Brilliant Blue agar. Crude enzyme extracts produced by solid state fermentation of rice bran were assayed for activity. Three variable factors (temperature, pH and enzyme type) were optimized to increase the amylase activity of the parents and selected fusants using rice bran medium and solid state fermentation. Analysis of this optimization was completed using the Central Composite Design (CCD) of the Response Surface Methodology (RSM). Amylase activity assays conducted at room temperature and 80℃ demonstrated that Aspergillus designates, T5 (920.21 U/ml, 966.67 U/ml), T13 (430 U/ml, 1011.11 U/ml) and T14 (500.63 U/ml, 1012.00 U/ml) all exhibited improved function making them the preferred fusants. Amylases produced from these fusants were observed to be active over the entire pH range evaluated in this study. Fusants T5 and T14 demonstrated optimal activity under acidic and alkaline conditions, respectively. Fusants T13 and T14 produced the most amylase at 72 h while parents TA, TC and fusant T5 produced the most amylase after 96 h of incubation. Response surface methodology examinations revealed that the enzyme from fusant T5 was the optimal enzyme demonstrating the highest activity (1055.17 U/ml) at pH 4 and a temperature of 40℃. This enzyme lost activity with further increases in temperature. Starch hydrolysis using fusant T5 gave the highest yield of glucose (1.6158 g/100 ml). The significant activities of the selected fusants at 28 ± 2℃ and 80℃ and the higher sugar yields from cassava starch hydrolysis over their parental strains indicate that it is possible to improve amylase activity using the protoplast fusion technique.