• Title/Summary/Keyword: alkali-treated wood

Search Result 34, Processing Time 0.02 seconds

Total Utilization of Woody Biomass by Steam Explosion(I) -Delignification of pine and oak exploded wood- (폭쇄법(爆碎法)을 이용(利用)한 목질계(木質系) Biomass의 종합적(綜合的) 이용(利用)(I) -소나무와 신갈나무 폭쇄재(爆碎材)의 탈(脫)리그닌처리(處理)-)

  • Lee, Jong-Yoon;Chang, Jun-Pok;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.11-20
    • /
    • 1992
  • Steam explosion is one of the most effective pretreatment for fractionating wood. This leads to the total utilization of wood basic components; cellulose, hemicellulose and lignin. The amount of sugar and lignin extracted with the hot water method was very low. The lignin content of residues after extraction with using a sodium hydroxide treatment, increased delignification of carbohydrate as the concentration of alkali was increased. Oak, pretreated with steam exploded at 25kg/$cm^2$ for 6 min. then 1% alkali for 2hrs. showed a delignification rate up to 95%. A sodium chlorite treatment of steam exploded pine and oak also afforded a high deligninfication effect. Pine, treated 10% sodium chlorite for 2hrs. showed high delignification. However, by using a sodium hydroxide treatment, a 2% retreatment for Ihr. after a 2% for 2hrs. afforded remarkable delignification effect on exploded wood at 30kg/$cm^2$ for 9min. and at 35kg/$cm^2$ for 3-6min. In oak, an initial 2hrs. treatment of 2% sodium chlorite was followed by a second 2hrs. treatment at 10%. This showed a delignification rate of 96%.

  • PDF

Influence of Alkali and Silane Treatment on the Physico-Mechanical Properties of Grewia serrulata Fibres

  • JAIN, Bhupesh;MALLYA, Ravindra;NAYAK, Suhas Yeshwant;HECKADKA, Srinivas Shenoy;PRABHU, Shrinivasa;MAHESHA, G.T.;SANCHETI, Gaurav
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.325-337
    • /
    • 2022
  • Grewia serrulata fibres were chemically treated with 3%, 6%, and 9% NaOH for the duration of 4 h. Additionally, the NaOH-treated fibres were also treated with 3 - (trimethoxysilyl) propyl methacrylate (silane). Properties such as density and tensile strength of the treated fibres were compared against the untreated fibres. The highest density was obtained in the case of 9% NaOH + silane treated fibres, which was 26.47% higher than untreated fibres, implying effective removal of hemicellulose. Likewise, the highest tensile strength was also obtained in the case of 9% NaOH + silane treated fibres. The increment observed in the tensile strength of the natural fibres was related to the removal of impurities, hemicellulose, and stress-raisers as well as deposition over the fibre surface that smoothed it. These observations were further validated by estimating changes in chemical constituents due to chemical treatment along with characterization techniques such as scanning electron microscopy and thermogravimetric analysis.

Mechanical Properties of Cellulose-filled Epoxy Hybrid Composites Reinforced with Alkali-treated Hemp Fiber (염기 처리 대마 섬유로 강화된 셀룰로오스 충전 에폭시 하이브리드 복합재의 기계적 물성)

  • Anand, P.;Anbumalar, V.
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.46-55
    • /
    • 2015
  • There is a limit for deforestation in order to keep the environmental cycle undisturbed. The heart of the paper is to replace the wood to a maximum extent to obtain a sustainable environment. This research aims at new natural composites in which treated hemp fiber used as reinforcement, synthetic cellulose used as particulate to improve the adhesion between matrix - fiber interface and Epoxy LY556 acted as matrix fabricated by hand layup technique. The density, water absorption, tensile properties, impact strength, hardness, flexural properties and compressive properties have been evaluated under ASTM standards and compare the results with existing materials such as wood, aluminium, etc., The composite hemp fiber reinforced polymer (HFRP) could be exploited as an effective replacement for wood and it would be suitable for automotive applications by comparing results.

A Study of Recycle of Waste Wood After Cultivating Oak Mushroom (II) - On the Structure of Cellulose Crystal Transformation of the Waste Wood - (표고버섯골목의 재활용에 관한 연구 (II) - 폐골목 세포벽 중의 셀룰로오스 결정의 변태구조 -)

  • Kim, Nam-Hun;Lee, Won-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.1-7
    • /
    • 1995
  • The crystal transformation from cellulose I to cellulose II during alkaline swelling of waste wood, which has been used for cultivating oak mushroom(Cortinellus edodes (Berk.) Ito et Imai), was investigated and compared to that of normal wood by a series of X-ray diffraction analysis. When the sapwood of cultivated wood was treated with 20% NaOH solution for 2 hours, the cellulose I can be easily transformed into Na-cellulose I than normal wood or heartwood of cultivated wood. Certainly the formation of Na-cellulose in wood is proportional to alkali swelling duration, and the formation of cultivated sapwood was faster than that of the other woods. Cellulose I in the sapwood of cultivated wood was easily transformed into cellulose II during mercerization, but the sapwood of normal wood and the heartwood of cultivated wood hardly converted to cellulose II. Namely, most of Na-cellulose I in normal wood can be reconverted to cellulose I in the process of washing and drying. Therefore, it can be concluded from this study that in cell wall lignin and hemicellulose can prevent the alkaline swelling of cellulose in wood and the transformation from cellulose I to cellulose II as well.

  • PDF

Uitlization of Ligno-cellulosic Biomass(I) - Manufacture of Explosion Apparatus and Composition of Explode Wood - (목질계(木質系) Biomass의 이용(利用)(I) - 폭쇄장치(爆碎裝置)의 제작(製作) 및 폭쇄재(爆碎材)의 조성(組成) -)

  • Lee, Jong-Yoon;Park, Sang-Jin;Lee, Seok-Gun;Cho, Nam-Seok;Chang, Jun-Pok;Ann, Byung-Jo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.65-73
    • /
    • 1989
  • Steam explosion process is an efficient pretreatment method for sparating and utilizing wood main components has attracted attention in utilization of ligno-cellulosic biomass. In order to obtain the effective pretreatment condition. this study was made explosion apparatus. examined the composition. extraction of exploded wood. Wood chips of pine(Pinus densiflora oak (Quercus serrata) and birch wood (Belula platyphylla var. japonica) were treated with a high pressure steam(20-30 kg/$cm^2$, 2-6 minutes). The results can be summarized as follow; In analysis of exploded wood(EXW). It was found arabinose residues rapidly decreased with increasing of steaming time and pressure. Extractives of EXW with sodium hydroxide increased with increasing of steaming-time and- pressure especially extractives 1% sodium hydroxide has higher than other extracted method extractives of hard wood(oak, birch) has higher than pine wood. In EXW extracted with sodium hydroxide and methanol lignin was partially delignified alkali extraction was more delignified than methanol extraction hardwood than pine wood.

  • PDF

Analysis of Chemical and Physical Characteristics of Log Woods for Oak Mushroom Production Depending on Cultivation Periods and Steam Explosion Treatment (표고버섯 골목의 사용연수에 따른 화학적, 물리적 성상 및 폭쇄처리 후 변화 관찰)

  • Koo, Bon-Wook;Park, Jun-Yeong;Lee, Soo-Min;Choi, Don-Ha;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.1 s.129
    • /
    • pp.77-86
    • /
    • 2005
  • In order to investigate the ability of log wood for oak mushroom production as a source of an alternative energy, both chemical and physical characteristics of log wood were investigated according to the cultivation periods. Also, both chemical and physical characteristics of material that treated by steam explosion were investigated to confirm the pretreatment effect by remaining enzyme as a control. The contents of ash, water-, alkali- and organic soluble extracts have been increased after the inoculation. It appeard that holocellulose contents substantially decreased and the contents of lignin as another main component of wood remained constant after the inoculation. However this result implied that indeed, a sufficient amount of lignin has been degraded paritially by enzymes of oak mushroom Lentinus edodes if we consider that the amount of holocelulose was substantially reduced. It also indicated that the degree of degradation gradually progressed but crystallinity decreased after the inoculation. The contents of water-, alkali- and organic soluble extracts have been increased by steam explosion. Holocellulose contents increased within narrow limits and lignin contents remained constant. However the contents of holocellulose and lignin have been decreased by steam explosion, considering that the amount of other extractives was relatively increased. The degree of crystallinity and lignin contents reduction by steam explosion was almost similar to the result obtained by increasing cultivation periods. According to the results, log woods for mushroom production have a potential as material for developing alternative energy.

Comparison of enzymatic hydrolysis characteristics of mushroom culutured waste (MCW) and Cork oak by alkali treatment (알칼리 처리에 따른 폐골목 및 굴참나무의 효소당화 특성 비교)

  • Yoon, Su-Young;Seung, Hyun-A;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.3
    • /
    • pp.44-49
    • /
    • 2014
  • The mushroom cultured waste(MCW) from cork oak was evaluated as the raw material for bioethanol production. For enzymatic hydrolysis, cellulase cocktails (Celluclast 1.5L and Novozym 188) was used for polysaccharides to monosaccharides conversion. Compared with sound cork oak woodmeal, woodmeal from MCW showed higher cellulose to glucose conversion. To improve polysaccharides to monosaccharides conversion, pretreatment by sodium hydroxide was applied. Even though more xylan and lignin were removed in woodmeal of MCW than that of cork oak, concentration of glucose was higher from sodium hydroxide treated cork oak woodmeal (51.3 g/L) than treated MCW woodmeal (41.6 g/L).

Effect of Alkali-Washing at Different Concentration on the Chemical Compositions of the Steam Treated Bamboo Strands

  • MAULANA, Muhammad Iqbal;MURDA, Rio Ardiansyah;PURUSATAMA, Byantara Darsan;SARI, Rita Kartika;NAWAWI, Deded Sarip;NIKMATIN, Siti;HIDAYAT, Wahyu;LEE, Seung Hwan;FEBRIANTO, Fauzi;KIM, Nam Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.14-22
    • /
    • 2021
  • The objective of this study was to investigate the effect of alkali-washing with different sodium hydroxide concentrations on the chemical compositions of steam-treated Betung bamboo strand. Strands were subjected to steam treatment at 126 ℃ for 1 h under 0.14 MPa pressure and followed by washing with 1-5% sodium hydroxide solution for 30 sec. The alteration of structural and non-structural chemical components content of bamboo strands was evaluated. Steam and washing treatments with various concentrations of sodium hydroxide solution considerably reduced the extractive content of bamboo strands, and the cell wall chemical components of the strand in the small degree. FTIR analysis showed noticeable changes in peaks related to hemicellulose and lignin. The relative crystallinity increased significantly after steam and washing treatment with sodium hydroxide up to 3% concentration. SEM Images showed smooth and clean strands surface after washing with 3% sodium hydroxide.

Enhancing Enzymatic Digestibility of Miscanthus sinensis using Steam Explosion Coupled with Chemicals

  • Jung, Ji Young;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.218-230
    • /
    • 2016
  • The effect of steam explosion coupled with alkali (1% sodium hydroxide, 1% potassium hydroxide and 15% sodium carbonate) or organosolv solvent (85% methanol, 70% ethanol and dioxane) on the production of sugar, changes in the chemical composition of M. sinensis were evaluated. The steam explosion coupled with 1% potassium hydroxide and dioxane were better as compared with other treatments based on the removals of acid insoluble lignin, and about 89.0% and 85.4%. Enzymatic hydrolysis of steam explosion with 1% potassium hydroxide and dioxane treated M. sinensis, gave a 98.0% and 96.5% of glucose conversion, respectively. These results suggested that pretreatment of M. sinensis with either potassium hydroxide or dioxane could be a promising pretreatment method for glucose production.

A Study on Characteristics of Coated Films on Wood Surface by Nitrocellulose Lacquer, Aminoalkyd, Polyester, and Polyurethan (니트로셀룰로오스락카, 아미노알키드, 폴리에스테르 및 폴리우레탄 도료(塗料)의 도막성능(塗膜性能)에 관(關)한 고찰(考察))

  • Lee, Phil-Woo;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.12-21
    • /
    • 1989
  • This experiment was executed to investigate the characteristics of gloss and color difference in coated films by N.C. Lacquer, Aminoalkyd, Polyester. and Polyurethan coating after chemical (distilled water, ethyl alcohol. acetic acid, and sodium hydroxide) and heating ($120^{\circ}C$) treatments, cold-check test, and U.V. radiation. The results obtained were summarized as follows 1. The gloss decreasing rate by water resistance test was the least among chemicals treated on coated films. 2. The color difference of coated films chemical treatments highly and similarly increased, except the alkali treatment showing a little increase. 3. In the color difference by U.V. radiation, the polyester coated film showed generally large difference compared with the other coated films.

  • PDF