• Title/Summary/Keyword: alkali-feldspar megacrysts

Search Result 3, Processing Time 0.018 seconds

Petrology of the Blastoporphyritic Granite Gneiss in the Southwestern Part of the Sobaegsan Massif (소백산육괴 서남부의 잔류반상 화강편마암의 암석학적 연구)

  • Lee, Choon-Hee;Lee, Sang-Won;Ock, Soo-Seck;Song, Young-Sun
    • Journal of the Korean earth science society
    • /
    • v.22 no.6
    • /
    • pp.528-547
    • /
    • 2001
  • The blastoporphyritic granite gneiss (BPGN) including much alkali-feldspar megacrysts occurs in Jiri mountains area, southwestern part of Sobaegsan massif, Korea. The BPGN is formed gneiss complexes with other gneisses in Precambrian. The BPGN was named as porphyroblastic gneiss with porphyroblasts of alkali-feldspar megacrysts by other researchers, but the BPGN includes of euhedral alkali-feldspars (microcline), and the boundary with the granitic gneiss represents sharp contact as intrusive relationship. The BPGN mainly composes of alkali-feldspar megacrysts, quartz, plagioclase, K-feldspar and biotite some almandine and accessary minerals are muscovite, chlorite, apatite, zircon and opaques. The alkali-feldspar is microcline with perthitic texture. An content of plagioclases show 30 to 40. Biotites occur two type, one is Brown biotite which shows compositional ranges of Mg/Fe+Mg ratios from 0.38 to 0.52, the other is Green Bt. which is retrograde product. Camels to be various sizes and shapes have composition of almandine with 73 to 80 mole percent, but represent retrogressive zoning from core (X$_{pyr}$: 15.9${\sim}$20.8) to rim (X$_{pyr}$:13.7${\sim}$15.9) to be evidence of retrograde metamorphism. Megacrysts of alkali-feldspar in the BPGN show rectangular shape of euhedral and some become ellipsoidal or spheroidal in shape and the average size up to 20 cm long. The megacryst includes of biotite, plagioclase and quartz, and rarely euhedral apatite as inclusions. In petrochemistry the BPGN represents granodiorite composition, characteristics of peraluminous S-type granitoid and calc-alkaline features.

  • PDF

A Study on the Characteristics and the Growth Mechanism of Surface Cracks from the Naksansa Seven-Storied Stone Pagoda, Korea (낙산사 칠층석탑에 발달한 표면균열의 특성과 성장 메커니즘)

  • Park, Sung-chul;Kim, Jae-hwan;Jwa, Yong-joo
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.2
    • /
    • pp.136-149
    • /
    • 2013
  • We studied the characteristics and the growth mechanism of surface cracks from the Naksansa seven-storied stone pagoda(Treasure No. 499). The pagoda is composed of both medium-grained, porphyritic biotite granite and hornblende-biotite granite. Alkali feldspar megacrysts are easily found as phenocrysts in the rocks. Surface cracks intensely developed at the lower part of the stone pagoda, and their directions are of vertical, horizontal, and diagonal. The rocks of the pagoda have intrinsic microcracks which can be defined as rift and grain rock cleavages. Both rock cleavages seems likely to have led to the crack growth and consequently to the mechanical deterioration of the pagoda. The vertical cracks developed parallel to the vertical compressive stress, whereas horizontal ones formed by tensile strength normal to the vertical compression. In addition mineral cleavages and twin planes of alkali feldspar phenocrysts seems to have been closely related to the mechanical breakdown of the rocks in the NE part of the pagoda.

Mineral chemistry and major element geochemistry of the granitic rocks in the Cheongsan area (청산 일대에 분포하는 화강암류의 광물조성과 주성분원소 지구화학)

  • 사공희;좌용주
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.185-209
    • /
    • 1997
  • Granitic rocks in the Cheongsan area cosist of three plutons-Baegrog granodiorite, Cheongsan porphyritic granite, and two mica granite. Amphilboles from the Baegrog granodiorite belong to the calcic amphilbole group and show compositional variations from magnesio-hornblende in the core to actinolitic hornblende in the rim. Biotites from the three granites represent intermediate compositions between phlogopite and annite. Muscovites from the two mica granite are considered to be primary muscovite in terms of the occurrence and mineral chemistry. Each granitic rock reveals systematic variation of major oxide contents with $SiO_2$. Major oxide variation trends of the Baegrog granodiorite are fairly different from those of Cheongsan porphyritic granite and two mica granite. The latter two granitic rocks are also different with each other in variation trends for some oxides. Thus three granitic rocks in the Cheongsan area were solidifield from the independent magmas of chemically different, heterogeneous origin. The granitic rocks in the area show calc-alkaline nature. The whole rock geochemistry shows that the Baegrog granodiorite and Cheongsan porphyritic granite belong to metaluminous, I-type granite, whereas the two mica granite to peraluminous, I/S-type granite. The opaque mineral contents and magnetic susceptibility represent that the granitic rocks in the area are ilmenite-series granite, indicating that each magma was solidified under relatively reducing environment. The tectonic environment of the granitic activity in the area seems to have been active continental margin. Alkali feldspar megacryst in the Cheongsan porphyritic granite is considered to be magmatic, judging from the crystal size, shape, arrangement, and distribution pattern of inclusions. The petro-graphical characteristics of the Cheongsan porphyritic granite can be explained by two stage crystallization. Under the smaller degree of undercooling the alkali feldspar megacrysts rapidly grew owing to slow rate of nucleation and fast growth rate. At the larger degree of undercooling the nucleation rate and density drastically increased and the small crystals of the matrix were formed.

  • PDF