• Title/Summary/Keyword: alkali silica reaction

Search Result 110, Processing Time 0.024 seconds

An Experimental Study on the Alkali-Silica Reaction of Crushed Stones (쇄석 골재의 알칼리-실리카 반응에 관한 실험적 연구)

  • 윤재환;정재동;이영수
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.108-117
    • /
    • 1994
  • This study was performed to investigate the Alkali-Silica Reaction(ASR) of crushed stones using chemical analysis, polarization microscope, XRD, chemical method(KS F 2545, ASTM C 289), mortar-bar method( KS F 2546, ASTM C 227) and Scanning Electron Microscope (SEM ) and Energy Dispersive X-ray Analysis(EDXA) of reaction products by ASK in the mortar bars and to investigate the influence on alkali content and kind of added alkali to the ASR. Test results show that one kind of domestic crushed stone is estimated as deleterious by ASTM chemical method and mortar bar method, and reaction product is proved as alkali silicate gel by EDXA.

The Effect of Meta-Kaolin Replacement on Alkali-Silica Reaction (메타카올린 치환에 따른 알칼리-실리카 반응 팽창 저감효과)

  • Jun Ssang Sun;Lee Hyomin;Jin Chi Sub;Hwang Jin Yeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.360-363
    • /
    • 2004
  • The effectiveness of Meta-Kaolin to prevent detrimental expansion due to alkali-silica reaction was investigated through the ASTM C 1260 method. Reactive aggregate used is a metamorphic rock. The replacement proportions of portland cement by Meta-Kaolin were 0, 5, 10, 15, 25 and 35 percent, respectively. The results indicate that 25 percent replacement of portland cement by Meta-Kaolin seems to be most effective to reduce alkali-silica reaction expansion under this experimental conditions.

  • PDF

The Effect of Fly Ash Replacement on Alkali - Silica Reaction (플라이 애쉬 치환에 따른 알칼리-실리카 반응의 팽창저감 효과)

  • Kim Jung Eun;Jun Ssang Sun;Seo Ki Young;Jin Chi Sub
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.185-188
    • /
    • 2004
  • The effect of fly ash to prevent detrimental expansion due to alkali -silica reaction was investigated through the ASTM C 1260 method that is one of the most commonly used method because results can be obtained within about 16 days. Reactive aggregate used is a netamorphic rock and sedimentary rock. The replacement proportions of portland cement by fly ash were respectively 0, 5, 10, 15, 25 and 35 percent. Expansion of mortar bars due to alkali-silica reaction decreased with the increase of fly ash content. The results show that the expansion due to alkali-silica reaction is dramatically reduced in the presence of high volume fly ash. When the fly ash content examine from all angles (strength and a flow), the replacement proportions of fly ash is about $25\%$ in order to control on expansion.

  • PDF

The use of artificial neural networks in predicting ASR of concrete containing nano-silica

  • Tabatabaei, Ramin;Sanjaria, Hamid Reza;Shamsadini, Mohsen
    • Computers and Concrete
    • /
    • v.13 no.6
    • /
    • pp.739-748
    • /
    • 2014
  • In this article, by using experimental studies and artificial neural network has been tried to investigate the use of nano-silica as concrete admixture to reduce alkali-silica reaction. If there are reactive aggregates and alkali of cement with enough moisture in concrete, a gel will be formed. Then with high reactivity between alkali of cement and existence of silica in aggregates, this gel will expand by absorption of water, and causes expansive pressure and cracks be formed. At the time passes, this gel will reduce both durability and strength of the concrete. By reducing the size of silicate to nano, specific surface area of particles and number of atoms on the surface will be increased, which causes more pozzolanic activity of them. Nano-silica can react with calcium hydroxide ($Ca(OH)_2$) and produces C-S-H gel. In this study, accelerated mortar bar specimens according to ASTM C 1260 and ASTM C 1567, with different mix proportions were prepared using aggregates of Kerman, such as: none admixture and plasticizer, different proportions of nano-silica separately. By opening the moulds after 24 hour and curing in water at $80^{\circ}C$ for 24 hour, then curing in (1N NaOH) at $80^{\circ}C$ for 14 days, length expansion of mortar bars were measured and compared. It was noted that, the lowest length expansion of a specimens shows the best proportion of admixture based on alkali-silica reactivity. Then, prediction of alkali-silica reaction of concrete has been investigated by using artificial neural network. In this study the backpropagation network has been used and compared with different algorithms to train network. Finally, the best amount of nano silica for adding to mix proportion, also the best algorithm and number of neurons in hidden layer of artificial neural network have been offered.

Effect of Waste Glass Fine Aggregate on Mechanical Properites and Alkali-Silica Reaction(ASR), After ASR Residual Mechanical Properties of High Strength Mortar (폐유리 잔골재가 고강도 모르타르의 역학적 특성 및 알칼리-실리카 반응(ASR), ASR 후, 잔류 역학적 특성에 미치는 영향)

  • Eu, Ha-Min;Kim, Gyu-Yong;Son, Min-Jae;Sasui, Sasui;Lee, Yae-Chan;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.31-32
    • /
    • 2020
  • This study measured the mechanical performance and residual strength of high strength/normal strength mortar mixed with waste glass fine aggregate after alkali-silica reaction and alkali-silica reaction. As a result, the effect of improving the slip phenomenon of the waste glass fine aggregate in the high-strength mortar was not significant, but rather the amount of ASR was increased.

  • PDF

Effect of the replacement rates of Waste Glass Fine Aggregate on the Mechanical Properties and Alkali - Silica Reaction of Mortars with different W/C Ratio - (폐유리 잔골재 대체율이 물시멘트비가 다른 모르타르의 역학적 특성 및 알칼리 -실리카 반응에 미치는 영향 -)

  • Eu, Ha-Min;Kim, Gyu-Yong;Nam, Jeong-Soo;Son, Min-Jae;Sasui, Sasui;Lee, Yae-Chan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.195-196
    • /
    • 2020
  • This study evaluated the mechanical properties and alkali silica reaction of mortar according to the mixing ratio of waste glass. As a result, as the mixing ratio of the waste glass increased, the compressive and flexible strength of the mortar decreased due to the slip of aggregate, and the alkali-silica reaction(ASR) increased. So, it is considered that research is needed to prevent slip and ASR of the waste glass aggregate in order to use the waste glass as a fine aggregate for concrete.

  • PDF

Alkali-Silica Reaction of Accelerating Agents in Shotcrete (숏크리트용 급결제의 알칼리-실리카 반응성 검토)

  • Choi, Bo-Ra;Hong, Byung-Tak;Lee, Jae-Wan;Lee, Su-Jin;Park, Hae-Kyun;Won, Jong-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.323-324
    • /
    • 2010
  • The purpose of this study was to investigate alkali-silica reaction of accelerating agents in shotcrete. The test was performed with accelerating agents (aluminate, alkali-free, cement based mineral admixture) in the Type I cement. As a test result, using the nonreactive aggregates, detrimental expansion due to alkali-silica reaction doesn't occurred regardless of equivalent alkali contents of accelerating agent.

  • PDF

Modelling of Alkali-Silica Reaction Effects on Mechanical Property Changes of Concrete

  • Kim, Jung Joong;Fan, Tai;Reda Tah, Mahmoud M.;Lim, Nam-Hyoung
    • International Journal of Railway
    • /
    • v.8 no.2
    • /
    • pp.42-45
    • /
    • 2015
  • Alkali-silica reaction (ASR) is a chemical reaction in concrete that alkalis in cement react with reactive silica in aggregate in the presence of water. When ASR takes place, it produces gels that absorb water and expand. Swelling of ASR gels can damage concrete and cause cracking and volume expansion in concrete structure. In this paper, mechanical consequences of ASR on concrete are simulated by a finite element (FE) analysis. An FE model of concrete is built. The evolution of concrete mechanical properties subjected to ASR is achieved by FE analyses. The constitutive model of concrete is attained via the FE analysis. A case study is used to demonstrate the proposed method. The simulated results using the proposed model are in good agreement with the observations of concrete with ASR reported in the literature. The results can be used for a basic research to enhance durability of concrete slab tracks and concrete railway sleepers.

An Experimental Study on Alkali-Silica Reaction of Alkali-Activated Ground Granulated Blast Furnace Slag Mortars (알칼리 활성 고로슬래그 미분말 모르터의 알칼리-실리카 반응에 관한 실험적 연구)

  • Kim, Young-Soo;Moon, Dong-Il;Lee, Dong-Woon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.345-352
    • /
    • 2011
  • The purpose of this study was to investigate the expansion of alkali-activated mortar based on ground granulated blast furnace slag containing reactive aggregate due to alkali-silica reaction. In addition, this study was particularly concerned with the behavior of these alkaline materials in the presence of reactive aggregates. The experimental program included expansion measurement of the mortar bar specimens, as well as the determination of the morphology and composition of the alkali-silica reaction products by using scanning electron microscopy(SEM), and energy dispersive x-ray(EDX). The experiment showed that while alkali-activated ground granulated blast furnace slag mortars showed expansion due to the alkali-silica reaction, the expansion was 0.1% at Curing Day 14, showing that it is safe. After the accelerated test, SEM and BEM analysis showed the presence of alkali-silica gel and rim around the aggregate and cement paste. According to the EDX, the reaction products decreased markedly as alkali-activated ground granulated blast furnace slag was used. In addition, for the substitutive materials of mineral admixture, a further study on improving the quality of alkali-activated ground granulated blast furnace slag is needed to assure of the durability properties of concrete.

The Effect of the Residual Mortar of Recycled Concrete Aggregate on Alkali Silica Reaction (순환/재생골재의 잔류 모르타르 성분이 알칼리 실리카 반응성에 미치는 영향 평가)

  • Kim, Jeonghyun;Kim, Namho;Yang, Sungchul
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.19-24
    • /
    • 2015
  • PURPOSES : The objective of this study is to evaluate the effect of the residual mortar of recycled concrete aggregate on the expansion behavior during alkali silica reaction (ASR). METHODS: In order to evaluate the net effect of residual mortar on ASR expansion behavior, two aggregate samples with the same original virgin aggregate source but different residual mortar volumes were used. ASTM C1260 test was used to evaluate the ASR expansion behavior of these two aggregates and the original virgin aggregate. RESULTS: The greater the amount of residual mortar in recycled concrete aggregates, the less is the induced ASR expansion. Depending on the amount of residual mortar in recycled concrete aggregate, the ASR expansion of recycled concrete aggregate may be less than half of that of the original virgin aggregate. CONCLUSIONS: The residual mortar of recycled concrete aggregate may lead to the under estimation of the ASR expansion behavior of the original virgin aggregate.