• Title/Summary/Keyword: alkali silica reaction

Search Result 110, Processing Time 0.03 seconds

Material Property Evaluation for UFFA Rapid Setting Concrete including Calcium Hydroxide (수산화칼슘을 첨가한 UFFA 초속경 콘크리트의 물성특성 평가)

  • Jeon, Sung-Il;Nam, Jeong-Hee;An, Ji-Hwan;Kwon, Soo-Ahn
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.189-198
    • /
    • 2008
  • Generally, UFF A(Ultra Fine Fly Ash) has merit that advances a greater concrete workability and activates a greater pozzolanic reaction than common fly ash due to its ultra fine particle size. These properties enhance concrete durability by reducing permeability and increasing resistance of alkali silica reaction(ASR) and sulfate attack, etc. Due to these reasons, UFFA can be used in a rapid setting concrete. The purpose of this study is to develop and evaluate the rapid setting concrete with UFF A as a repair material for early-opening-to-traffic. In previous studies, if only UFFA is added to the rapid setting concrete mixture, pozzolanic reaction doesn't happen actively. Therefore, in this study, the chemical and physical tests were performed for rapid setting concrete with UFFA including calcium hydroxide and the activity of pozzolanic reaction was evaluated. Finally, the effectiveness of this mixture on enhancing concrete durability was investigated. As results, adding UFF A decreased the water/cement ratio of concrete, and compensated the reduced portion of the early strength of concrete. Also, rapid setting concrete with UFFA including calcium hydroxide activated a greater pozzolanic reaction than normal-UFF A concrete. As calcium hydroxide increases, electrical indication of concrete's ability to resist chloride ion penetration is promoted significantly.

  • PDF

An Influence of Additional Metals over Ni/SiO2 or Ni/Al2O3 on the Formation of CFC-1113 from CFC-113 (CFC-113로부터 CFC-1113의 합성시 Ni/SiO2(또는 Al2O3) 촉매상에서 다른 금속의 첨가효과)

  • Kim, JinHo;Park, Kun-You;Ha, Baik-Hyon
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.237-241
    • /
    • 1999
  • Nickel was impregnated on the $SiO_2$ and $Al_2O_3$ supports and applied to the reduction reaction of CFC-113 ($CF_2Cl$-$CFCl_2$) with hydrogen to 3FCl ($CF_2$=CFCl, CFC-1113). The conversion was rapidly declined on the Ni/$SiO_2$(or $Al_2O_3$) and the deactivation accelerated as the increase of Ni content. However, the selectivity of 3FCl was maintained at around 80% level. The simultaneous coprecipitation of copper and lithium on Ni/$Al_2O_3$ improved both the conversion and selectivity to 3FCl, but an excessive amount of lithium reduced the conversion as well as the selectivity of 3FCl. However, in the case of Ni/$SiO_2$, the conversion was greatly reduced possibly due to a loss of silica support with high surface area by the reaction of $SiO_2$ with HF. Such a reduction in conversion also can be ascribed to the decrease in active sites, caused by the addition of alkali metal compound, LiOH.

  • PDF

Pavement Impact Evaluation of Basic Materials of Airport Airside Deicers (공항 airside용 제설제의 기본물질에 대한 포장 영향성 평가 연구)

  • Kim, Young Ung;You, Kwang Ho;Jo, Chang Yeol;Cho, Nam-Hyun
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.25-34
    • /
    • 2016
  • OBJECTIVES : This is a basic research for the domestic production of airport-airside deicers. This research selected basic materials for deicers appropriate for the pavement of domestic airports by evaluating the deicing performances of basic materials used in international-standard airport deicers and their impacts on pavements. METHODS : Laboratory investigation was conducted to evaluate the asphalt surface tensile strength, concrete scaling impact, ASR impact, and deicing performances of sodium formate (NaFm), potassium formate (KFm), sodium acetate (NaAc), and potassium acetate (KAc), which are the basic de-icing materials commonly used at international airports, approved by the FAA. In addition, the analyses were also performed on the airside deicer urea, which is currently used in domestic airports. RESULTS : Laboratory investigation confirmed that sodium formate, potassium formate, sodium acetate, and potassium acetate had superior surface tensile strength, concrete scaling impact, and deicing performance compared to airside urea, but they also had greater impacts on concrete ASR. Among these materials, sodium formate had the best asphalt surface tensile strength, concrete scaling impact, and deicing performance, while also having the greatest impact on ASR; hence, mitigation plans for ASR were needed, if it were to be used as airport-airside deicer. CONCLUSIONS : It is necessary to consider additional additives to prevent ASR of concrete pavements when developing airport-airside deicers using sodium formate, potassium formate, sodium acetate, and potassium acetate.

Application Performance for Test Section of Premixed Fly Ash Concrete Pavement (프리믹스 플라이애시 콘크리트 포장 현장 적용 특성)

  • Hong, Seung-Ho;Han, Seung-Hwan;Lee, Byung-Duk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.765-768
    • /
    • 2008
  • The prevent methods of Alkali-Silica Reaction (ASR) are studying after the failure cases by ASR were reported in Korea. When ASR failure is causing to the step of maintenance, the available repair methods were rarely studied in the World. In this study, premixed fly ash cement was applied to prevent ASR in the concrete pavement. The ratio of fly ash and cement is 20 percent and 80 percent by weight of total cementious material. The construction performance of premixed fly ash cementious concrete pavement was studied that the application is verify to performance collected data during the constructing in the field. The freeze-thaw test was studied to verify durability of the premixed fly ash cementious material made specimen in the laboratory. The results show that construction performance and durability are well condition in this test section and freeze-thaw test.

  • PDF

Application of Fly Ash Concrete in the Pavement (시험시공을 통한 플라이애쉬 콘크리트 포장 적용 특성)

  • Hong, Seung-Ho;Lee, Byung-Duk;Han, Seung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.701-704
    • /
    • 2008
  • The case of failure of Alkali-silica reaction (ASR) on the cement concrete pavement was reported in Korea. In the United States America, the fly ash has less than 10 percent Cao reported that prevent expansion by ASR. Most of all fly ash in Korea have less than 10 percent CaO, therefore it is similar ASTM F fly ash in the USA. Crushed aggregates of the test section had expansion behavior by potential ASR that the ASTM C 1260 test method tested expansion 0.17 percent during 14 days. The test section of concrete pavement used crushed aggregate was constructed that fly ash have 20 percent weight of cementitious materials to prevent expansion by ASR. This study was performed flexural strength test for elapsed days and durability by freeze-thaw test. It was shown that flexural strength was increased elapsed days and good performed freeze-thaw test. This study shown that fly ash concrete pavement was good performance in the test section.

  • PDF

Effect on Ferronickel Slag Powder in ASR (페로니켈 슬래그 미분말이 ASR에 미치는 영향)

  • Kim, Min-Seok;Seo, Woo-Ram;Rhee, Suk-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.9-14
    • /
    • 2022
  • Most of the existing research on ferronickel slag has focused on its potential as aggregate and fine aggregate, this study was conducted focusing on the potential of ferronickel slag powder as a concrete admixture. For concrete, which fly ash, blast furnace slag, and FSP were mixed with each 10 % type the reactivity was evaluated by applying ASTM C 1260 of the United States. As a result, compared with the control group, the expansion rate of fly ash decreased by 8.43 % and that of fine blast furnace slag powder decreased by 14.46 %, while the expansion rate of ferronickel slag decreased by 49.40 %. it was confirmed that ferronickel slag can sufficiently be replaced existing supplementary cementitious admixtures such as fly ash and blast furnace slag in terms of suppressing the reactivity of aggregates. However as a result of SEM analysis, ettringites were generated, and additional research about how it affects concrete is needed.

Effect of Curing Conditions on the Alkali-Silica Reaction of Synthetic Lightweight Aggregate Concrete (양생조건(養生條件)이 인공경량골재(人工輕量骨材)콘크리트의 알카리-실리카 반응(反應)에 미치는 영향(影響))

  • Kim, Seong Wan;Sung, Chan Yong
    • Korean Journal of Agricultural Science
    • /
    • v.18 no.2
    • /
    • pp.140-147
    • /
    • 1991
  • This paper was performed to obtain the data applied to use of synthetic lightweight aggregate concrete affected by alkali silica reaction. The results obtained were summarized as follows : 1. The expansion of each type concrete was increased with increase of curing age, respectively. Also, at the curing age 90 days, the rate of expansion of type A, B, C and D concrete was increased 0.173%, 0.575%, 0.230% and 0.680%, respectively. Specially, the rate of expansion of type D concrete was shown 3.93 times higher than the type A concrete. The cracks width were increased with increase of expansion and at the 0.680% expansion, the maximum width was shown 0.5 mm. 2. The dynamic modulus of elasticity of each type concrete was increased with increase of curing age, respectively. At the curing age 30 days, the highest dynamic modulus of elasticity was showed at each type concrete, respectively. But, it was gradually decreased with increase of curing age at those concrete, respectively. Also, at the curing age A, B, C and D concrete was increased 24.3%, 33.7%, 28.1% and 37.0%, respectively. The rate of loss in type D concrete was shown 1.52 times higher than the type A concrete. 3. The ultrasonic pulse velocity of each type concrete was increased with increase of curing age, respectively. At the curing age 30 days, the highest ultrasonic pulse velocity was showed at each type concrete, respectively. But, it was gradually decreased with increase of curing age at those concrete, respectively. Also, at the curing age 90 days, the percentage loss of ultrasonic pulse velocity of type A, B, C and D concrete was increased 6.4%, 8.7%, 8.5% and 14.2%, respectively. The rate of loss in type D concrete was shown 2.21 times higher than the type A concrete. 4. The relation between dynamic modulus of elasticity and ultrasonic pulse velocity was highly significant. The dynamic modulus of elasticity was increased with increase and decreased with decrease of ultrasonic pulse velocity. Also, the decreasing rate of the dynamic modulus of elasticity was shown 2-7 times higher than the ultrasonic pulse velocity at each age, respectively. 5. The dynamic modulus of elasticity and ultrasonic pulse velocity were decreased with increase of expansion, and the decreasing rates were increased with increase of curing age. The increasing rate of expansion was shown higher than the decreasing rate of dynamic modulus and ultrasonic pulse velocity.

  • PDF

A Experimental Study on the Ready-mixed Shotcrete Using Granulated Blast Furnace Slag (고로슬래그 미분말을 혼입한 레디믹스트 숏크리트의 현장적용성에 관한 실험적 연구)

  • Choi, Hee-Sup;Kim, Dong-Min;Jang, Pil-Sung;Seo, Sin-Seuk
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.6
    • /
    • pp.31-45
    • /
    • 2009
  • The aim of this study is to evaluate the applicability of Granulated Blast Furnace Slag to the development of the Powdered Ready-mixed Shotcrete. First of all, after accomplishing SEM analysis and Leaching Test, the laboratory and field experiments for evaluating the utility of Granulated Blast Furnace Slag were performed. As a result of SEM and Leaching test, the environmental stability was confirmed. That is, non-detection of harmful lists and dense shotcrete structure result from mixing Granulated Blast Furnace Slag. As a result of lab. and field test, Blast Furnace Slag is superior to Plain Batch in improving strength and durability. And it will be able to improve to some extent the problem caused by the delayed reaction of existing Granulated Blast Furnace Slag with alkali activated material. Also the proper amount of Granulated Blast Furnace Slag is estimated to be under 30%. Finally, it is possible that Granulated Blast Furnace Slag can apply to economical recycling and development of the Ready-mixed Shotcrete for its price is only about 5% of Silica-finne's price.

Characterization of geopolymer made of municipal solid waste incineration ash slag (도시쓰레기 소각재 슬래그로 제조된 지오폴리머의 특성)

  • Kim, Yongsung;Kang, Seunggu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.1
    • /
    • pp.15-20
    • /
    • 2014
  • In this research, the geopolymer was fabricated using municipal solid waste incineration ash (denoted as MSWIA) slag and alkali activator, NaOH and its properties were analyzed. Particularly, the effects of NaOH molarity, particle size of MSWIA, and liquid/solids ratio on the compressive strength of geopolymers were investigated. The compressive strength of geopolymers fabricated increased with finer grain size of MSWIA, and optimum value of the liquid/solids ratio was identified as 0.13. As the molarity of the NaOH increased, the compressive strength of geopolymers was increased. Even more the 20 M of NaOH, but the strength was not increased. The calcium aluminum silicate and calcium aluminum silicate hydrate zeolites were generated in the geopolymer fabricated with more than 20 M of NaOH, with some unreacted silica and unknown crystals remained. The highest compressive strength, 163 MPa, of geopolymer was appeared at conditions of curing temperature $70^{\circ}C$, and 20 M of NaOH, indicating that the high concentration of NaOH accelerates the geopolymer reaction and dense microstructure. The high-strength geopolymer fabricated in the present study is expected to contribute significantly to develop the field of cement alternative substances and to improve the recycling rate of MSWIA slag.

Stabilization of Radioactive Molten Salt Waste by Using Silica-Based Inorganic Material (실리카 함유 무기매질에 의한 폐용융염의 안정화)

  • Park, Hwan-Seo;Kim, In-Tae;Kim, Hwan-Young;Kim, Joon-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.171-177
    • /
    • 2007
  • This study suggested a new method to stabilize molten salt wastes generated from the pyre-process for the spent fuel treatment. Using conventional sol-gel process, $SiO_2-Al_2O_3-P_2O_5$ (SAP) inorganic material that is reactive to metal chlorides were prepared. In this paper, the reactivity of SAP with the metal chlorides at $650{\sim}850$, the thermal stability of reaction products and their leach-resistance under the PCT-A test method were investigated. Alkali metal chlorides were converted into metal aluminosilicate($LixAlxSi1-_xO_{2-x}$) and metal phosphate($Li_3PO_4\;and\;Cs_2AlP_3O_{10}$) While alkali earth and rare earth chlorides were changed into only metal phosphates ($Sr_5(PO_4)_3Cl\;and\;CePO_4$). The conversion rate was about $96{\sim}99%$ at a salt waste/SAP weight ratio of 0.5 and a weight loss up to $1100^{\circ}C$ measured by thermogravimetric analysis were below 1wt%. The leach rates of Cs and Sr under the PCT-A test condition were about $10^{-2}g/m^2\;day\;and\;10^{-4}g/m^2\;day$. From these results, it could be concluded that SAP can be considered as an effective stabilizer for metal chlorides and the method using SAP will give a chance to reduce the volume of salt wasteform for the final disposal through further researches.

  • PDF