• 제목/요약/키워드: alkali resistant-glass fiber

Search Result 5, Processing Time 0.023 seconds

Physical Properties of Alkali Resistant-Glass Fibers with Refused Coal Ore in Continues Fiber Spinning Conditions

  • Ji-Sun Lee;Jinho Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.7
    • /
    • pp.355-362
    • /
    • 2024
  • AR (alkali resistant)-glass fibers were developed to provide better alkali resistance, but there is currently no research on AR-glass fiber manufacturing. In this study, we fabricated glass fiber from AR-glass using a continuous spinning process with 40 wt% refused coal ore. To confirm the melting properties of the marble glass, raw material was put into a (platinum) Pt crucible and melted at temperatures up to 1,650 ℃ for 2 h and then annealed. To confirm the transparent clear marble glass, visible transmittance was measured and the fiber spinning condition was investigated by high temperature viscosity measurement. A change in diameter was observed according to winding speed in the range of 100 to 700 rpm. We also checked the change in diameter as a function of fiberizing temperature in the range of 1,240 to 1,340 ℃. As winding speed increased at constant temperature, fiber diameter tended to decrease. However, at fiberizing temperature at constant winding speed, fiber diameter tended to increase. The properties of the prepared spinning fibers were confirmed by optical microscope, tensile strength, modulus and alkali-resistance tests.

The properties of AR(Alkali Resistant)-glass fiber by zirconia contents (지르코니아 함량에 따른 내알칼리 유리섬유의 특성)

  • Lee, Ji-Sun;Lim, Tae-Young;Lee, Mi-Jai;Hwang, Jonghee;Kim, Jin-Ho;Hyun, Soong-Keun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.263-271
    • /
    • 2015
  • Commercial AR(Alkali Resistant)-glass fiber has a good chemical resistant property, but also has a problem of difficulty in fiberizing process because of high viscosity in melted glass compare with E-glass fiber which is the most widely used for reinforced fiber of composite materials. In this study, we fabricated AR-glass fiber with low zirconia contents compare with commercial AR-glass fiber relatively, and measured properties against E-glass fiber. We obtained transparent clear glass with zirconia contents of 0.5~16 wt% by melting at $1600^{\circ}C$ for 2 hours. These AR-glass samples had high visible transmittance of 89~90 %, softening temperature of $703{\sim}887^{\circ}C$. And softening temperatures of them were increased according to the increasing zirconia contents. Compare with E-glass, AR-glass contains 4 wt% zirconia has different value of $-94^{\circ}C$ in softening temperature, $+68^{\circ}C$ at Log3 temperature and $-13^{\circ}C$ at Log5 temperature in viscosity. We could verify good alkali resistant property of the AR-glass fiber with SEM after dipping in alkali solution for 48~72 hours, and also high tensile strength, 1.7 times compare with E-glass fiber at 48 hours and 2.2 times at 72 hours. We conclude that this AR-glass fiber can be widely used as general alkali resistant glass fiber because of easy manufacturing condition and good properties even though it has low zirconia contents.

Flexural and tensile properties of a glass fiber-reinforced ultra-high-strength concrete: an experimental, micromechanical and numerical study

  • Roth, M. Jason;Slawson, Thomas R.;Flores, Omar G.
    • Computers and Concrete
    • /
    • v.7 no.2
    • /
    • pp.169-190
    • /
    • 2010
  • The focus of this research effort was characterization of the flexural and tensile properties of a specific ultra-high-strength, fiber-reinforced concrete material. The material exhibited a mean unconfined compressive strength of approximately 140 MPa and was reinforced with short, randomly distributed alkali resistant glass fibers. As a part of the study, coupled experimental, analytical and numerical investigations were performed. Flexural and direct tension tests were first conducted to experimentally characterize material behavior. Following experimentation, a micromechanically-based analytical model was utilized to calculate the material's tensile failure response, which was compared to the experimental results. Lastly, to investigate the relationship between the tensile failure and flexural response, a numerical analysis of the flexural experiments was performed utilizing the experimentally developed tensile failure function. Results of the experimental, analytical and numerical investigations are presented herein.

A Study on Improving the Non-Combustible Properties of High-Density Fiber Cement Composites (고밀도 섬유 시멘트 복합체 불연특성 개선에 관한 연구)

  • Song, Tae-Hyeob;Jang, Kyong-Pil
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.521-528
    • /
    • 2021
  • The high-density fiber composite manufacturing method by the extrusion molding method has the characteristic that continuous production is possible, and the product is molded through a mold forming a specific cross-section. OPC is used as a defect material, an appropriate amount of SiO2 is supplied for CaO reaction activity, and high density and high strength are expressed through steam and autoclave curing. However, due to the use of organic reinforcing fibers, the flame duration exceeds the regulations during the non-combustible performance test, making it difficult to secure performance. In this study, the product was produced by mixing alkali-resistant organic fiber and fly ash having voids as a binder by replacing the existing polypropylene fiber. appeared to be possible.

Properties of Self-hardened Inorganic Coating in the System Alumina-Silica-Calcium Oxide by the Reaction with Alkalies (알칼리 반응에 의한 알루미나-실리카-산화칼슘계 무기질 자기경화 코팅의 특성)

  • Jeon, Chang-Seob;Song, Tea-Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.381-386
    • /
    • 2010
  • Some basic properties of inorganic coatings hardened by the room temperature reaction with alkalies were examined. The coating paste was prepared from the powders in the system $Al_2O_3-SiO_2$-CaO using blast furnace slag, fly ash and amorphous ceramic fiber after mixing with a solution of sodium hydroxide and water glass. The mineralogical and morphological examinations were performed for the coatings prepared at room temperature and after heating to $1200^{\circ}C$ respectively. The binding force of the coating hardened at room temperature was caused by the formation of fairly dense matrix mainly composed of oyelite-containing amorphous phase formed by the reaction between blast furnace slag and alkali solution. At the temperature, fly ash and ceramic fiber was not reacted but imbedded in the binding phase, giving the fluidity to the paste and reinforcing the coating respectively. During heating up to $1200^{\circ}C$, instead of a break in the coating, anorthite and gehlenite was crystallized out by the reaction among the binding phase and unreacted components in ternary system. The crystallization of these minerals revealed to be a reason that the coating maintains dense morphology after heating. The maintenance of binding force after heat treatment is seemed to be also caused by the formation of welldispersed fiber-like mineral phase which is originated from the shape of the amorphous ceramic fiber used as a raw materials.