• Title/Summary/Keyword: alkali metal cation

Search Result 41, Processing Time 0.022 seconds

Influence of Alkali Metal Cation Type on Ionization Characteristics of Carbohydrates in ESI-MS

  • Choi, Sung-Seen;Kim, Jong-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.1996-2000
    • /
    • 2009
  • Alkali metal salts were introduced to enhance the ionization efficiency of glucose and maltooligoses in electrospray ionization-mass spectrometry (ESI-MS). A mixture of the same moles of glucose, maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose, and maltoheptaose was used. Salts of lithium, sodium, potassium, and cesium were employed as the cationizing agent. The ionization efficiency varied with the alkali metal cation types as well as the analyte sizes. Ion abundance distribution of the [M+$cation]^+$ ions of the carbohydrates varied with the fragmentor voltage. The maximum ion abundance at low fragmentor voltage was observed at maltose, while the maximum ion abundance at high fragmentor voltage shifted to maltotriose or maltotetraose for Na, K, and Cs. Variation of the ionization efficiency was explained with the hydrated cation size and the binding energy of the analyte and alkali metal cation.

Molecular Dynamics Simulation and Density Functional Theory Investigation for Thiacalix[4]biscrown and its Complexes with Alkali-Metal Cations

  • Hong, Joo-Yeon;Lee, Che-Wook;Ham, Si-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.453-456
    • /
    • 2010
  • The structural and energetic preferences of thiacalix[4]biscrown-5 with and without alkali metal ions ($Na^+$, $K^+$, $Rb^+$, and $Cs^+$) have been theoretically investigated for the first time using molecular dynamic (MD) simulations and density functional theory (MPWB1K/6-31G(d)//B3LYP/6-31G(d)) methods. The formation of the metal ion complex by the host is mainly driven by the electrostatic attraction between crown-5 oxygens and a cation together with the minor contribution of the cation-$\pi$ interaction between two facing phenyl rings around the cation. The computed binding energies and the atomic charge distribution analysis for the metal binding complexes indicate the selectivity toward a potassium ion. The theoretical results herein explain the experimentally observed extractability order by this host towards various alkali metal ions. The physical nature and the driving forces for cation recognition by this host are discussed in detail.

Diaza-18-crown-6 Ethers Containing Partially-fluorinated Benzyl Sidearms: Effects of Covalently Bonded Fluorine on the Alkali Metal Complexation

  • Chi, Ki-Whan;Shim, Kwang-Taeg;Huh, Hwang;Lee, Uk;Park, Young-Ja
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.393-398
    • /
    • 2005
  • The stability constants for the diaza-18-crown-6 ethers 2-6 and alkali metal cations ($Na^+,\;K^+,\;Rb^+\;and\;Cs^+$) were determined using potentiometry in 95% methanol. For each metal ion the stability constants of the partiallyfluorinated ligands 3-6 were larger than that of the non-fluorinated ligand 2, which might reflect an interaction between fluorine atoms and alkali metal cations. The stability constant of the ligand 4 was larger than that of the ligand 5 for each metal cation tested. This finding was also supported by the results of cation-induced chemical shifts in $^1H-,\;^{19}F$-NMR and extraction experiment. The potentiometry and NMR results as well as the X-ray crystal structures revealed that the position and number of fluorine atoms in the benzyl side arms was crucial for the enhanced interaction between a ligand and an alkali metal.

Solvent Extractions of Alkali Metal Cations and Alkaline Earth Cations by Ionizable Crown Ether Phosphonic Acids (이온성 크라운에테르 포스포닉산에 의한 알칼리 금속 양이온과 알칼리 토금속 양이온의 용매추출)

  • Chung, Yeong-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.50-55
    • /
    • 2005
  • A comparison of alkali metal cation and alkaline earth cation solvent extraction was made for three additional monoionizable crown ethers and one diionizable crown ether. sym-(n-Octyldibenzo)-16-crown-5-oxyacetic acid $\underline{1}$ exhibited high efficiency and selecvity in solvent extraction of alkali metal cations with respect to that observed with alkaline earth cations. Sizes of $Na^+$ and $Ca^{2+}$ appropriately match with the cavity size of monoethyl sym-bis[4(5)-tert-butylbenzo]-16-crown-5-oxymethylphosphonic acid $\underline{3}$. As the result, $Na^+$ and $Ca^{2+}$ are the best extracted. sym-(n-Octyldibenzo)-16-crown-5-oxymethyldiphosphonic acid $\underline{4}$was found to be somewhat selective for $Na^+$ over $Li^+$ and other alkaline earth metal cations. In the complexation of alklaine earth cations by crown ether diphosphonic acid $\underline{4}$, $Ca^{2+}$ and $Sr^{2+}$ are the appropriate sizes, but lager $Ba^{2+}$ may be due to favorable formation of a sandwich type complex between the crown ether cavity and the dianion of the deprotonated crown ether phoaphonic acid moiety.

Competitive Solvent Extraction of the Mixture of Alkali Metal and Alkaline Earth Metal Cation containing Crown Ether Carboxylic Acid and Crown Ether Phosphonic Acid (크라운에테르 카르복시산과 크라운에테르 포스포닉산을 포함한 알칼리 금속과 알칼리 토금속 양이온 혼합물의 경쟁적 용매추출)

  • Chung, Yeong-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.219-227
    • /
    • 2005
  • Competitive solvent extraction of the mixure of alkali metal and alkaline earth cation from water into organic solvent containing the crown ether carboxylic acid and anlogous crown ether phosphonic acid was investigated as follows. The lipophilic group is found to strongly influence to the selective extraction in the mixed systems from only alkali metal cation for sym-(n-decyldibenzo)-16-crown-5-oxyacetic acid $\underline{1}$ to mostly alkaline earth metal cation for sym-bis[4(5)-tert-butylbenzo]-16-crown-5-oxyacetic acid $\underline{3}$. Monoethyl sym-(n-decyldibenzo)-16-crown-5-oxymethylphosphonic acid $\underline{2}$. and monoethyl-sym- bis]4(5)-tert-butylbenzo]-16-crown-5-oxymethylphosphonic acid $\underline{4}$ showed good selectivity for $Na^+$ over $Mg^{2+}$, the second extracted ion. Structural variation in the crown ether phosphonic acid somewhat was influenced to the extraction selectivity in the mixed systems. when variation of the ionized group is influenced in the mixed systems, the selectivity of $Na^+$ as the second extracted ion was much better crown ether carboxylic acid $\underline{1}$ than crown ether phosphonic acid $\underline{2}$, while the efficiency of $Na^+$ extraction was better $\underline{2}$ (83% total loading) than $\underline{1}$ (32%).

mPW1PW91 Study of Complexation of Alkali Metal Ions with Mixed [2 + 2'] Calix[4]aryl Derivatives

  • Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3321-3330
    • /
    • 2012
  • The complexation characteristics of mixed [2 + 2'] calix[4]aryl derivatives (3 and 4) with alkali metal cations were investigated by the mPW1PW91 (hybrid HF-DF) calculation method. The total electronic and Gibbs free energies of the various complexes (cone, partial-cone, 1,2-alternate, and 1,3-alternate) of sodium and potassium cations with 3 and 4 were analyzed and compared. The structures of the endo- or exo-complexes of the alkali metal cation with the host 3 were optimized using the mPW1PW91/6-31G(d) method, followed by mPW1PW91/6-311+G(d) calculations. The structures of the endo- or exo-complexes of the alkali metal cation with the host 4 were optimized using the mPW1PW91/6-31G(d,p) method. The mPW1PW91 calculated relative energies of the various conformations of the free hosts (3 and 4) suggest that the cone conformers of 3 and 4 are the most stable. The mPW1PW91calculations also suggest that the complexation efficiencies of the sodium ion with hosts 3 and 4 are about 24 and 27 kcal/mol better than those of the potassium ion, respectively. These trends are in good agreement with the experimental results. The exo-complexation efficiencies of the sodium ion toward the conformers of hosts 3 and 4 are roughly 14 and 17 kcal/mol better than those for the endo-$Na^+$-complexes of 3 and 4, respectively. The exo-complexation of the cone isomer of 3 with cation could be confirmed by the differences of the diagnostic C=O bands in the free host and its complex's IR spectra.

Preparation of a Fluoroionophore Based on Porphyrin-Crown Ether

  • Shin, Eun Ju;Jung, Hyun-Suk
    • Journal of Photoscience
    • /
    • v.11 no.32
    • /
    • pp.83-87
    • /
    • 2004
  • A porphyrin compound containing a crown ether moiety (Por-Crown) and its zinc complex (ZnPor-Crown) have been prepared and the effect of the addition of alkali metal on their fluorescence has been investigated. As alkali metal cations were added, the absorption and fluorescence maxima did not change. However, the absorbance and intensity of fluorescence increased dramatically. Among the alkali metal cations tested, addition of K$^{+}$ and Cs$^{+}$ showed strongest enhancement of absorbance and fluorescence intensity of Por-Crown and ZnPor-Crown.own.

  • PDF

DFT Study for Azobenzene Crown Ether p-tert-Butylcalix[4]arene Complexed with Alkali Metal Ion

  • Park, Seong-Jun;Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.541-545
    • /
    • 2008
  • Stable molecular isomers were calculated for the azobenzene crown ether p-tert-butylcalix[4]arene (1) in the host and their alkali-metal-ion complexes. The structures of two distinct isomers (cis and trans) have been optimized using DFT B3LYP/6-31G(d,p) method. Trans isomer of 1 is found to be 11.69 kcal/mol more stable than cis analogue. For two different kinds of complexation mode, the alkali-metal-cation in the crown-ether moiety (exo) has much better complexation efficiency than in the benzene-rings (endo) pocket for both isomers of 1. Sodium ion has much better complexation efficiency than potassium ion in all kinds of complexation mode with host 1. The Na+ complexation efficiency of the trans-complex (1) in the exo-binding mode is 8.24 kcal/mol better than cis-exo analogue.

Extraction of Alkali Metal Cation with Crown Ethers and HDEHP (Crown Ether와 HDEHP에 의한 알칼리금속이온의 추출)

  • Ihn Chong Lee;Si Joong Kim;Chul Lee
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.359-368
    • /
    • 1986
  • Solvent extraction equilibria of alkali metal cation with crown ether (DC18C6, DC24C8) and HDEHP have been studied. The extraction equilibrium constants increase in the order of, in the DC18C6 system, $Na^+, and in the DC24C8 system, $Rb^+. The species extracted to organic phase are $M_1(crown ether)_1\;(HDEHP)_1$. The magnitude of extraction equilibrium constant is determined by the distribution ratio of crown ether between organic and aqueous phase, and stability constant of crown ether-alkali metal complex.

  • PDF