• Title/Summary/Keyword: alkali hydroxide

Search Result 218, Processing Time 0.025 seconds

Synthesis and Characterization of Photosensitive Polyimides Containing Alicyclic Structure (지방족고리 구조를 함유하는 감광성 폴리이미드 수지의 합성 및 특성 평가)

  • 심종천;최성묵;심현보;권수한;이미혜
    • Polymer(Korea)
    • /
    • v.28 no.6
    • /
    • pp.494-501
    • /
    • 2004
  • A new alkali developable photosensitive poly(amic acid) (PAA-0) with transmittance at 400 nm was synthesized from cyclobutane-1,2,3,4-tetracarboxylic dianhydride, 2-(methacryloyloxy)ethyl-3,5-diamino-benzoate and 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyl disiloxane in N-methyl-2-pyrrolidinone. Photosensitivity of the PAA-0 was investigated at 365-400 nm in the presence of a photoinitiator using a high pressure mercury lamp. The photo-cured poly(amic acid) was insoluble toward aqueous 2.38 wt% tetramethylammonium hydroxide solution. Negative pattern of the PAA-0 with 25 ${\mu}{\textrm}{m}$ resolution was obtained by developing with 2.38 wt% tetramethylammonium hydroxide solution after exposure of 600 mJ/$\textrm{cm}^2$ in the presence of 2,2-dimethoxy-2-phenyl-acetophenone as a photoinitiator. The patterned poly(amic acid) was converted to polyimide by thermal curing at 25$0^{\circ}C$ for 50 min, which showed chemical resistance against photoresist stripper as well as good transmittance at 400 nm.

Nerve Injury from Overfilled Calcium Hydroxide Root Canal Filling Paste for Maxillary Lateral Incisor Endodontic Treatment (상악 측절치 근관치료 중 수산화칼슘 호제근충제 과충전으로 인하여 발생한 신경손상의 치험례)

  • Na, Kwang Myung;Kim, Jong-Bae;Chin, Byung-Rho;Kim, Jin-Wook;Kim, Chin-Soo;Kwon, Tae-Geon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.4
    • /
    • pp.260-264
    • /
    • 2013
  • Calcium hydroxide root canal filing paste (vitapex) is widely used as canal filling paste for infected canal. However, chemical burn is possible because of the high alkali base of calcium hydroxide. A 57-year old woman was admitted to our clinic for consistent dull pain and paresthesia in the left upper lip, zygoma and buccal cheek area, which developed during an endodontic treatment of the left lateral incisor. Radiographic finding showed radiopaque material, which exits from the left incisor root apex, and was within the left canine and first premolar buccal soft tissue. The overfilled Vitapex extended to the soft tissue was surgically curetted. The result of the surgical curettage was favorable. Though slight hypoesthesia on the upper lip was still remained, paresthesia on zygomatic and buccal cheek area was completely recovered. As far as we know, this is the first case report of infraorbital nerve damage from overfilled Vitapex material.

Dye Adsorption Ability of Chitin in Reactive Dyebath (반응염료염액에서의 키틴의 염료흡착성능)

  • 유혜자;김정희;이혜자;이전숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.2
    • /
    • pp.349-354
    • /
    • 2002
  • In order to decolorize the reactive dye wastewater, we investigated the dye-adsorption ability of chitin, which was natural polymer obtained from shrimp shell. Chitin particle(less than 250 ${\mu}{\textrm}{m}$n) was prepared from shrimp shells in the processes of decalcification in aqueous hydrochloric acid solution and deproteination in aqueous sodium hydroxide solution. The particle size of chitin was controlled to less than 250 ${\mu}{\textrm}{m}$. Three tripes of the reactive dyes-C.I. Reactive Red 120, C.I. Reactive red 241 and C.I. Reactive Black 5-were used. Dye adsorption ability of chitin was investigated by dipping the particle in the dyebaths of concentration of 0.0l%, 0.03% and 0.05% for various periods of time(1,3,5, 10,20,40,80,160minutes). The influence of addition of salt(Na$_2$SO$_4$) and alkali to the dyebaths on dye-absorption was also investigated. We obtained the following results fur the dye-absolution ability of chitin in the dyebaths of three types of reactive dyes. 1) The amount of dye uptake by chitin was increased by addition of salt to the dyebaths. 2) As the concentration of alkali became higher than 3g/I, the amount of dye uptake by chitin was increased. Chitin showed good dye-adsorption ability, when the alkali concentration was high. 3) Chitin showed equal dye uptake in the three types of dyebaths when the dye concentration was 0.0l%. Over 90% of dyestuffs was adsorbed from the dyebaths in ten minutes. When the dye concentration was higher, better adsorption ability was showed in a dye bath of Reactive black 5 than in the others. When the dye concentration was 0.03%, 90% of Reactive red 120 and Reactive red 241 was adsorbed in 40 minutes and the same of Reactive black 5 in 10 minutes. When the dye concentration was 0.05%, 9()% of Reactive red 120 was adsorbed in 80 minutes, and Reactive black 5 in to minutes.

A Study on Wool Fabric Treated with Anionic Surfactant and Alkali (음이온계 계면활성제 존재하에서 양모직물의 알칼리 처리에 관한 연구)

  • Lee Jung Boon;Ryu Hyo Seon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.11 no.2 s.24
    • /
    • pp.101-112
    • /
    • 1987
  • The purpose of this study is to investigate the influence of addition of sodium dodecyl sulfate(SDS) when wool is treated with sodium hydroxide(NaOH). Physical and chemical changes were examined on wool treated with various cone. of NaOH and SDS simultaneously. The result are as follows. 1. The higher the temperature and the longer the time of NaOH treatment are, the more alkali damage wool get : increase in weight loss and decrease in urea-bisalphite solubility and in tensile strength. But the treatment time reacts less effective than the temperature. 2. When wool is treated with NaOH, at NaOH cone. under $10^{-3}M$., the addition of SDS alleviates the alkali reaction on wool: increase in cystine contents and in urea-bisulpite solubility, and decrease in degree of swelling. On the other hand, at NaOH cone. over $10^{-2}M$., the addition of SDS promotes the alkali reaction on the wool. 3. When wool is treated with NaOH, the addition of SDS shows no changes on the tensile strength. On the other hand, at NaOH cone. under $10^{-2}M$., the addition of SDS shows no changes on the softness of wool, but at the $10^{-1}M$. NaOH cone. addition of SDS increases the soft-ness of wool. The area shrinkage of wool treated with NaOH and SDS shows less changes than with NaOH only.

  • PDF

Alkali Treatment Effect of Kenaf Fibers on the Characteristics of Kenaf/PLA Biocomposites (Kenaf 섬유의 알칼리처리가 Kenaf/PLA 바이오복합재료의 특성에 미치는 영향)

  • Seo, Jeong Min;Cho, Donghwan;Park, Won Ho
    • Journal of Adhesion and Interface
    • /
    • v.9 no.4
    • /
    • pp.1-11
    • /
    • 2008
  • In the present study, kenaf fibers were treated with sodium hydroxide using soaking and ultrasonic methods prior to biocomposite processing, respectively. The effect of alkali treatment on the kenaf-PLA interfacial adhesion and mechanical and thermal characteristics of kenaf/poly(lactic acid) biocomposites was investigated in terms of their interfacial shear strength, flexural properties, dynamic mechanical properties and thermal stability and also microscopic observations of kenaf fibers and the composite fracture surfaces. As a result, use of both soaking and ultrasonic methods for treating kenaf fiber surfaces played a role in increasing the fiber-matrix adhesion and the mechanical properties of the biocomposites. Their characteristics depended not only on the fiber surface treatment method but also on the treatment condition like alkali concentration and treatment time.

  • PDF

Improvement of Dimensional Stability of Tropical Light-Wood Ceiba pentandra (L) by Combined Alkali Treatment and Densification

  • Deded Sarip NAWAWI;Andita MARIA;Rizal Danang FIRDAUS;Istie Sekartining RAHAYU;Adesna FATRAWANA;Fadlan PRAMATANA;Pamona Silvia SINAGA;Widya FATRIASARI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.2
    • /
    • pp.133-144
    • /
    • 2023
  • Densification is an effective method for improving the physical and mechanical properties of low-density wood. However, the set-recovery of dimensions was found to be the problem of densified wood due to low fixation during the densification process. Alkali pretreatment before densification is thought to be a modification process to improve the dimensional stability of densified wood. In this research, the wood samples used were boiled in a 1.25 N sodium hydroxide (NaOH) solution at different times, followed by densification for 5 h at 100℃. The alkali pretreatment for 1, 3, and 5 h of boiling increased the dimensional stability of densified woods and anti-swelling efficiency values were 8.52%, 63.24%, and 48.94%, respectively. The boiling of wood in NaOH solution decreased the holocellulose content, as well as lignin to a lesser degree, and a lower crystallinity index was observed. The lower hydroxyl groups and a higher proportion of lignin in treated samples seem to have contributed to the high dimensional stability detected.

Alkali Recovery by Electrodialysis Process: A Review (전기투석 공정에 의한 알칼리 회수: 총설)

  • Sarsenbek Assel;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.3
    • /
    • pp.87-93
    • /
    • 2023
  • Electrodialysis (ED) is essential in separating ions through an ion exchange membrane. The disposal of brine generated from seawater desalination is a primary environmental concern, and its recycling through membrane separation technology is highly efficient. Alkali is produced by several chemical industries such as leather, electroplating, dyeing, and smelting, etc. A high concentration of alkali in the waste needs treatment before releasing into the environment as it is highly corrosive and has a chemical oxygen demand (COD) value. The concentration of calcium and magnesium is almost double in brine and is the perfect candidate for carbon dioxide adsorption, a major environmental pollutant. Sodium hydroxide is essential for the metal carbonation process which, is easily produced by the bipolar membrane electrodialysis process. Various strategies are available for its recovery, like reverse osmosis (RO), nanofiltration (NF), ultrafiltration (UF), and ED. This review discusses the ED process by ion exchange membrane for alkali recovery are discussed.

Effects of Free Alkali and Moisture on Sucrose Polyesters Synthesis (유리 알카리 및 수분이 sucrose polyesters 합성에 미치는 영향)

  • Chung, Ha-Yull;Kim, Suk-Ju;Yoon, Sung-Woo;Yoon, Hee-Nam;Kong, Un-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.247-250
    • /
    • 1992
  • Effects of free alkali and moisture on sucrose polyesters (SPE)-possible non calorie fat substitute-synthesis were investigated using a model system composed of sodium oleate, sucrose, potassium carbonate and methyl oleate. Trace amounts of free alkali in sodium oleate were found to interefere with SPE synthesis. When free alkali content in sodium oleate was varied gradually from 0% to 5%(w/w), the yield of SPE production was reduced from 92% to 45.5%. The moisture absorbed in sodium oleate, sucrose and potassium carbonate during storage also interefered with SPE synthesis. The yield (92%) of SPE production with dried ($105^{\circ}C$.6 hrs) reactants and catalysts was higher than that (89%) of SPE production with non-dried. Soybean oil fatty acid sodium soaps (FASS) not containing free alkali could be manufactured with slightly less than molar ratio of sodium hydroxide to soybean oil fatty acid methyl esters (FAME). Practically, 91.7% yield of soybean oil SPE production was outcomed by minimizing free alkali and moisture which were remaining in sucrose, potassium carbonate, soybean oil FASS and soybean oil FAME.

  • PDF

Effect of Alkali Treatment Method and Concentration of Rice Straw on the Flexural Properties and Impact Strength of Rice Straw/Recycled Polyethylene Composites (볏짚/재활용폴리에틸렌 복합재료의 굴곡특성 및 충격강도에 미치는 볏짚의 알칼리처리 방법 및 농도의 영향)

  • Lee, Ki Young;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.20 no.3
    • /
    • pp.87-95
    • /
    • 2019
  • In the present study, the effect of alkali treatment of rice straw on the flexural properties and impact strength of rice straw/recycled polyethylene composite was investigated. Alkali treatments were performed by means of two different methods at various sodium hydroxide (NaOH) concentrations. One is static soaking method and the other is dynamic shaking method. The composites were made by compression molding technique using rice straw/recycled polyethylene pellets produced by twin-screw extrusion process. The result strongly depends on the alkali treatment method and concentration. The shaking method done with a low concentration of 1 wt% NaOH exhibits the highest flexural and impact properties whereas the soaking method done with a high concentration of 10 wt% NaOH exhibits the highest properties, being supported qualitatively by the fiber-matrix interfacial bonding of the composites. The properties between the two highest property cases above-described are comparable each other. The study suggests that such a low concentration of 1 wt% NaOH may be used for alkali treatment of natural fibers to improve the flexural and impact properties of resulting composites, rather than using high concentrations of NaOH, 10 wt% or higher. Considering of environmental concerns of alkali treatment, the shaking method is preferable to use.

Physical Properties and Dyeability of Cotton Fabrics Treated with Liquid Ammonia (액체암모니아 처리 면직물의 물성 및 염색성)

  • Jeon, Sung-Ki;Lee, Chang-Soo;Im, Yong-Jin;Lee, Chung;Kim, Tae-Kyung;Lee, Hye-Jung
    • Textile Coloration and Finishing
    • /
    • v.15 no.4
    • /
    • pp.73-79
    • /
    • 2003
  • It is generally known that cotton treated with liquid ammonia has better soft handle, wrinkle recoveries and stability of appearance as compared with the alkali mercerized cotton. In this study, the various cotton fabrics treated with liquid ammonia$(NH_3)$, sodium hydroxide(NaOH) and sodium hydroxide(NaOH)/liquid ammonia$(NH_3)$ and untreated cotton fabric were investigated and compared in terms of physical properties and dyeing behavior. As the result, the strength of four kinds of cotton fabrics were similar. But the elongation of cotton treated with liquid ammonia increased slightly. Liquid ammonia treatment reduced the crystallinity of cotton and the crystalline structure of cotton transformed from cellulose 1 to mixed structure of celluloseIand III. In dyeing, dyeing rate decreased but equilibrium dye uptake increased by liquid ammonia treatment of cotton fabrics.