• 제목/요약/키워드: alkali hydroxide

검색결과 218건 처리시간 0.021초

COLONIZATION OF ALKALI-TREATED FIBROUS ROUGHAGES BY ANAEROBIC RUMEN FUNGI

  • Wuliji, T.;McManus, W.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제1권2호
    • /
    • pp.65-71
    • /
    • 1988
  • This study reports light and electron microscope examination of rumen fungal colonization of alkali-treated roughage feeds incubated in decron bags in the rumen of cannulated sheep for varying time intervals. Six roughages, pre-treated with ammonium hydroxide or sodium hydroxide at 4% (w/w) level were examined together with untreated control samples. Alkali pre-treatment was associated with an earlier and more pronounced fungal colonization than all control roughages. Sodium hydroxide pre-treatment was significantly more effective than ammonium hydroxide in improving the susceptibility of roughages to rumen fungal colonization and studies by SEM showed that the pre-treatment permitted greater penetration of feeds by fungi. Sodium hydroxide pre-treatment also significantly increased dry matter disappearance from feed held in Dacron bags in the rumen with all feeds except Lucerne stem. It is not known to what extent fungal activity contributed to increased breakdown of the feeds.

가성알칼리와 탄산나트륨을 혼합한 활성화제를 사용한 알칼리 활성화 고로슬래그 모르타르의 강도 특성 (The Strength Properties of Alkali-Activated Slag Mortars by Combined Caustic Alkali with Sodium Carbonate as Activator)

  • 김태완
    • 콘크리트학회논문집
    • /
    • 제24권6호
    • /
    • pp.745-752
    • /
    • 2012
  • 이 연구는 혼합 알칼리 활성화 슬래그 모르타르의 압축강도에 미치는 영향에 관한 것이다. 활성화제의 효과는 활성화제의 종류, 농도 등이 강도에 영향을 미치는 것으로 알려져있다. 혼합 활성화제는 5가지 가소성 알칼리(수산화나트륨, 수산화칼슘, 수산화마그네슘, 수산화알루미늄, 수산화칼륨)와 탄산나트륨($Na_2CO_3$)를 혼합하였다. 배함은 각 활성화제를 1M, 2M, 그리고 3M의 서로 다른 농도로 하였다. 압축강도 결과는 혼합 알칼리 활성화 슬래그 모르타르는 탄산나트륨의 농도가 증가하면 증가하는 것으로 나타났다. 혼합 활성화제를 사용한 알칼리 활성화 슬래그 모르타르는 모든 재령과 시험체가 탄산나트륨을 혼합하지 않은 컨트롤 케이스보다 향상된 강도를 나타내었다. 전자주사현미경(SEM) 관찰 결과 활성화 반응으로 C-S-H와 aluminusilicate gel이 생성된 것을 볼 수 있었다.

저농도 NaOH 팽윤과 고해에 따른 수초지 특성 변화 (Changes in the Handsheet Properties by Low Concentration Sodium Hydroxide Swelling and Beating)

  • 최경화;김아람;조병욱
    • 펄프종이기술
    • /
    • 제46권4호
    • /
    • pp.69-75
    • /
    • 2014
  • Effects of alkali swelling of HwBKP (hardwood bleached kraft pulp) at a low concentration below 2 percent (based on the oven-dried weight of pulp) on handsheet properties were investigated. Swelling treatment of HwBKP was performed at various low NaOH concentrations with/without beating. Then, the changes in handsheet properties were evaluated in terms of bulk, optical and strength properties. It was found that bulk was slightly increased when the alkali concentration was increased. When the pulp was only swollen without beating, paper optical and strength properties was slightly decreased or not changed with alkali concentration. When the pulp was alkali-swollen after beating, paper strength and opacity showed almost no changes while brightness was increased. When the pulp was beaten after NaOH swelling, alkali concentration showed almost no effect on brightness and opacity of paper. Paper strength was slightly decreased with alkali concentration, suggesting that alkali pretreatment before refining could adversely affect refining efficiency.

저농도 NaOH 팽윤과 고해에 따른 섬유특성 변화 (Changes in Fiber Characteristics by Low Concentration Sodium Hydroxide Swelling and Beating)

  • 김아람;최경화;조병욱
    • 펄프종이기술
    • /
    • 제46권3호
    • /
    • pp.65-72
    • /
    • 2014
  • In this study, effects of alkali swelling at low concentration below 2 percent on properties of hardwood bleached kraft pulp (HwBKP) were elucidated. Swelling treatment of HwBKP was performed at various NaOH concentrations with/without beating. Then, the swelling characteristics of pulp fiber was evaluated by measuring the solvent retention values such as water retention value (WRV) and isopropyl alcohol retention value (LRV). It was found that fiber characteristics were influenced by NaOH swelling even at low alkali concentration and beating treatment as well. The values of WRV and LRV were decreased when the alkali concentration was increased. It is the result from the decreased acidic groups of pulp which were formed during beating. The acidic groups could be neutralized and then removed by alkali. The difference between WRV and LRV was decreased with increasing alkali concentration while the difference was increased when the alkali swollen pulp was beaten. In addition, the crystalline structure of HwBKP was almost not changed while the crystallinity was influenced by swelling treatment at a low alkali concentration.

알칼리 활성화 슬래그 모르타르의 특성에 미치는 혼합 활성화제의 영향 (Influence of Blended Activators on the Physical Properties of Alkali-activated Slag Mortar)

  • 김태완;박현재;서기영
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제16권6호
    • /
    • pp.26-33
    • /
    • 2012
  • 본 연구는 알칼리 활성화 슬래그에서 혼합 활성화제에 관한 것이다. 본 연구에서는 수산화나트륨(NaOH, A Case), 수산화칼슘($Ca(OH)_2$, B Case), 수산화마그네슘($Mg(OH)_2$, C Case), 수산화알루미늄($Al(OH)_3$, D Case), 그리고 수산화칼륨(KOH, E Case)의 5가지 수산화계열 활성화제를 사용했다. 이 5가지 수산화계열 활성화제와 탄산나트륨($Na_2CO_3$)를 혼합하였다. 5가지 수산화계열 활성화제의 농도는 3M로 하고, 탄산나트륨은 1M, 2M, 3M로 하였다. 플로우와 응결 특성은 탄산나트륨의 혼합에 따라 감소하는 결과가 나타났다. 그러나 압축응력은 탄산나트륨의 혼합 농도에 따라 증가하는 결과를 나타내었다. 이것은 수산화계열 활성화제와 탄산나트륨의 혼합은 알칼리 활성화 슬래그 모르타르의 특성에 효과적인 것으로 판단된다.

열처리 카올린 분말의 알칼리활성화 반응에 미치는 가열온도의 영향 (Effect of the Heating Temperature on the Alkali-activation Reaction of Calcined Kaolin Powder)

  • 김성곤;송태웅
    • 한국세라믹학회지
    • /
    • 제49권6호
    • /
    • pp.601-607
    • /
    • 2012
  • The alkali-activation reaction of two types of typical kaolin calcined at various lower temperatures was investigated at room temperature and at elevated temperatures. For the assessment of the reactivity, the temperature increase and the setting time of pastes prepared with calcined kaolin and sodium/potassium hydroxide solution were measured. Unlike raw kaolin, calcined kaolin samples prepared at various temperature showed an alkali-activation reaction according to the different aspects of the changes in the mineral phases. The reactivity with alkaline solutions was exceedingly activated in the samples calcined at $600-650^{\circ}C$, but the reactivity gradually decreased as the temperature increased in a higher temperature range, most likely due to the changes in the crystal structure of the dehydrated kaolin. The activation effect of the calcination treatment was achieved at reaction temperatures that exceeded $60^{\circ}C$ and was enhanced as the temperature increased. The reactivity of the calcined kaolin with an alkaline solution was more enhanced with the solution of a higher concentration and with a solution prepared from sodium hydroxide rather than potassium hydroxide.

고온에서의 알칼리 활성화 내화성 결합재의 강도 및 공극구조 평가 (Estimation of Strength and Pore Structure of Alkali-Activated Fire Protection Materials at High Temperature)

  • 송훈;김영호;김완기;소형석
    • 한국디지털건축인테리어학회논문집
    • /
    • 제12권4호
    • /
    • pp.59-66
    • /
    • 2012
  • This study is interested in identifying the effectiveness of alkali-activated fire protection material compounds including the alkali-activator such as potassium hydroxide, sodium silicate and fly ash as the fire resistant finishing materials. Also, this paper is concerned with change in compressive strength and pore structure of the alkali-activated fire protection material at high temperatures. The testing methods of fire protection materials in high temperature properties are make use of TG-DSC and mercury intrusion porosimetry measurements. This study results show that compressive strength is rapidly degraded depending on a rise of heating temperature. Porosity showed a tendency to increase irrespective of specimen types. This is due to both the outbreak of collapse of gel comprising the cement and a micro crack by heating. However, alkali-activated fire protection material composed of potassium hydroxide, sodium silicate and fly ash has the thermal stability of the slight decrease of compressive strength and porosity at high temperature. These thermal stability is caused by the ceramic binding capacity induced by alkali activation reaction by the reason of the thermal analysis result not showing the decomposition of calcium hydrate.

Development of geopolymer with pyroclastic flow deposit called Shirasu

  • Katpady, Dhruva Narayana;Takewaka, Koji;Yamaguchi, Toshinobu
    • Advances in materials Research
    • /
    • 제4권3호
    • /
    • pp.179-192
    • /
    • 2015
  • The study presents a preliminary investigation on the applicability of Shirasu (a pyroclastic flow deposit characterized by high percentage of volcanic glass) in geopolymer. Comparative study on compressive strength and internal pore structure has been done between geopolymers with alkali activated Shirasu and fly ash as aluminosilicates. Mortar mix proportions are selected based on variations in ratio of alkaline activators to aluminosilicate and also on silica to alkali hydroxide ratio. From the experimental study, Shirasu geopolymer exhibited fairly good compressive strength. Mix proportion based on silica to alkali hydroxide ratio is observed to have profound effect on strength development.

장기재령 콘크리트의 할렬면에서 알칼리농도에 의한 페놀프탈레인 용액의 변색 (Phenolphthalein Solution Discoloration determined by alkali concentration in long-term concrete check surface)

  • 박현;이종록;김광기;김우재;김정섭;정상진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2008년도 춘계 학술논문 발표대회
    • /
    • pp.183-186
    • /
    • 2008
  • Carbonation is measured as Phenolphthalein Solution, it is possible to confirm the scope of alkali through acid and basic reaction. Then, Concrete Basic Reaction is decided according to alkali concentration depending on Potassium Hydroxide Now that Carbonation is gradually produced toward inner side from outer side, with time going by, it doesnt work, to some adequate depth, in as fast time as compulsory facilitating test. Thus, this research thesis made a comparative analysis on concrete phenomenal discoloration borderline following Phenolphthalein Solution, as part of a bid to measure Carbonation. Also, the thesis measured Concrete Alkali Concentration. The result showed that concrete coloring is classified into red and scarlet according to alkali concentration, and into borderline breakpoint of the speckle of scarlet and carbonation reaction. The higher chroma becomes with concrete decolorizing, the higher alkali concentration becomes.

  • PDF

쌀, 옥수수, 칡 및 생강 전분의 알카리 호화 (Alkali Gelatinization of Rice, Corn, Arrow Root and Ginger Root Starches)

  • 김성곤;정혜민;조만희
    • Applied Biological Chemistry
    • /
    • 제27권3호
    • /
    • pp.214-216
    • /
    • 1984
  • Alkali gelatinization of rice, corn, arrow root and ginger root starches at various sodium hydroxide concentrations was investigated. Critical concentrations of alkali for starch gelatinization ranged from 2.33 to 3.17 meq NaOH per gram of starch. Ginger root starch was most resistant to alkali gelatinization and arrow root starch was least stable to alkali.

  • PDF