• Title/Summary/Keyword: aliphatic and aromatic curing agent

Search Result 2, Processing Time 0.017 seconds

Curing of Epoxy Resins by Aminophosphazene Derivatives and Its Thermal Properties (아미노포스파젠 유도체에 의한 에폭시수지의 경화와 열적성질)

  • 윤흥수
    • Textile Coloration and Finishing
    • /
    • v.11 no.6
    • /
    • pp.7-17
    • /
    • 1999
  • Aminophosphazene derivatives were prepared from hexachlorocyclotriphosphazene and used for the curing agents of epoxy resins. The effect of the curing agent on the dynamic viscoelastic properties, flame proofing, and heat resistance of the cured epoxy resins were investigated and compared with those for the epoxy resins cured with aliphatic and aromatic amines. The epoxy resin cured by 1,1-diamino-3,3,5,5-tetrachlorocyclotriphosphazene showed the highest storage modulus and glass transition temperature when cured at 19$0^{\circ}C$ for 6 hours. The epoxy resins cured with phosphazene derivatives showed superior flame proofing to those with aliphatic amine and aromatic amine. Particularly it is an effective curing agent for epoxy resins to enhance the storage modulus, flame proofing and resistance to heat.

  • PDF

Flame Retardancy and Physical Properties of Flame-Retardant PU Coatings Containing Aliphatic and Aromatic Isocyanates (지방족 및 방향족 이소시아네이트를 함유하는 PU 난연도료의 도막물성과 난연성 비교)

  • Kim, Sung-Rae;Park, Hyong-Jin;Hahm, Hyun-Sik;Hwang, Yong-Hyun;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.25-32
    • /
    • 2002
  • Two PU flame-retardant coatings, 2,3-DBPO/N-l00 (DBPON) and 2,3-DBPO/IL (DBPOI), were prepared by curing 2,3-dibromo modified polyester (2,3-DBPO) with isocyanate curing agent Desmodur N-l00 (or Desmodur IL) at room temperature. The physical properties and flame-retardancy of the two coatings were tested and compared. As a result, the pot-life, yellowness index, lightness index difference, $60^{\circ}$ specular gloss, cross-hatch adhesion, viscosity, and accelerated weathering resistance of DBPON were better than those of DBPOI; the fineness of grind of the two coatings were the same; and the drying time, hardness, and abrasion resistance of DBPOI were better than those of DBPON. The flame retardancy of the flame-retardant coatings increased with the content of the flame retarding component, 2,3-dibromopropanoic acid (2,3-DBP); and the LOI values of the two coatings were in a range of $27{\sim}29%$ when the content of 2,3-DBP was 30wt%.