• Title/Summary/Keyword: align

Search Result 542, Processing Time 0.023 seconds

Identification, sequence characterization and expression analysis of the arginine kinase gene in response to laminarin challenge from the Oriental land snail, Nesiohelix samarangae (동양달팽이(Nesiohelix samarangae)의 arginine kinase 유전자 분석 및 발현 패턴에 관한 연구)

  • Jeong, Ji Eun;Lee, Yong Seok
    • The Korean Journal of Malacology
    • /
    • v.29 no.3
    • /
    • pp.171-179
    • /
    • 2013
  • Arginine kinase (ArK) is known to play an important role in most invertebrates the level of ATP by phosphorylation of phosphagens in cell and immuninty in living organisms. ArK has been identified in many kinds of organisms ranging from invertebrate to vertebrate. However, no ArK gene has been cloned and investigated from N. samarangae. This leads us to identify ArK cDNA (NsArK) from the expressed sequence tag (EST) sequencing of N. samarangae. Sequence analysis indicated that the coding region of 1,065 bp contains 355 amino acid residues. Molecular phylogenetic analysis shows that NsArK had very high similarities with mollusca and arthropoda. In an attempt to investigate a potential role of NsArK in the digestive gland of N. samarangae, expression patterns were analyzed. RT-PCR analsysis shows that NsArK mRNA is induced in the rane of 1.2 fold at 6 hr by laminarin when compared with the control. The immunnologial and physiological role of NsArK remains to be further investigated in N. samarangae.

Fabrication of a Mach-Zehnder interferometer for education using a rotating glass plate and a 3D printer (회전 유리판과 3D 프린터를 이용한 교육용 마흐젠더 간섭계 제작)

  • Jang, Seong-Hun;Ju, Young-G
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.5
    • /
    • pp.213-220
    • /
    • 2017
  • This paper proposes how to fabricate an educational Mach-Zehnder interferometer that is easy to align and inexpensive, using 3D printers and semiconductor lasers. The interferometer consists of a body $165mm{\times}120mm{\times}57mm$ in size, mirror mounts, a laser holder, beam splitters, and so on. The laser path is adjusted by 4 mirror mounts, each comprised of rubber bands, small metal wires, and a screw. The interference fringe is enlarged by the lens at the final stage. The refractive index of a slide glass was measured by counting the number of moving interference fringes while the slide glass, inserted into one of the two interferometer arms, is rotating. The formula for the refractive index as a function of the optical-path difference and rotation angle was obtained, and used to calculate the refractive index of glass from the interferometer experiment. The use of a rotating glass in one arm of the interferometer nullifies the need for a precision stage, which despite its high cost is often required to observe the moving interference fringe in the classroom. Therefore, the 3D-printed Mach-Zehnder interferometer proposed in this paper can be very useful for education, because of its affordability and performance. It enables students to perform both qualitative and quantitative studies using a 3D-printed interferometer, such as measuring the refractive index of a glass sample, and the wavelength of light.

Development of Fiber-end-cap Fabrication Equipment (대구경 광섬유 엔드캡 제작장비 개발)

  • Lee, Sung Hun;Hwang, Soon Hwi;Kim, Tae Kyun;Yang, Whan Seok;Yoon, Yeong Gap;Kim, Seon Ju
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.2
    • /
    • pp.49-54
    • /
    • 2021
  • In this paper, we design and construct the equipment to manufacture large-diameter optical fiber end caps, which are the core parts of high-power fiber lasers, and we fabricate large-diameter optical fiber end caps using the home-made equipment. This equipment consists of a CO2 laser as a fusion-splice heat source, a precision stage assembly for transferring the position of a large-diameter optical fiber and an end cap, and a vision system used for alignment when the fusion splice is interlocked with the stage assembly. The output of the laser source is interlocked with the stage assembly to control the output, and the equipment is manufactured to align the polarization axis of the large-diameter polarization-maintaining optical fiber with the vision system. Optical fiber end caps were manufactured by laser fusion splicing of a large-diameter polarization-maintaining optical fiber with a clad diameter of 400 ㎛ and an end cap of 10×5×2 ㎣ (W×D×H) using home-made equipment. Signal-light insertion loss, polarization extinction ratio, and beam quality M2 of the fabricated large-diameter optical fiber end caps were measured to be 0.6%, 16.7 dB, and 1.21, respectively.

Relationship Between Information Technology and Corporate Organization (정보기술과 기업조직의 관계에 관한 연구)

  • Kim, Lark-Sang
    • Journal of Digital Convergence
    • /
    • v.16 no.11
    • /
    • pp.221-230
    • /
    • 2018
  • Most of researchers and business futurists agree that traditional organizational designs are inadequate for coping with today's turbulent and increasingly networked world. Executives in small firms find that their organizations must tap into an extended network of partners to achieve the scale and power needed to succeed in industries dominated by large, global firms. As they attempt to build lean yet agile businesses, these executives are finding that they no longer rely on gut instinct alone. Neither can they simply copy organizational model that worked in the past. They must understand how organizational design choices influence operational efficiency and flexibility and, even more important, how to best align the organization with the environment and the strategy chosen to quickly and effectively sense and respond to opportunities and threats This research examines the capabilities required to build businesses that can survive and prosper in today's fast-faced and uncertain environment. The insights presented in this research have emerged from over 30 years of work with hundreds of executives and entrepreneurs as they struggled to build businesses that could cope with the demands of a rapidly changing, networked global economy. The insights from this research suggest that IT is an important enabler for developing the best capabilities required for success.

A Study on Digital Healthcare Optometry System Using Optometry DB

  • Kim, Do-Yeon;Jung, Jin-Young;Kim, Yong-Man;Park, Koo-Rack
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.9
    • /
    • pp.155-166
    • /
    • 2021
  • Recently, digital health care technology is spreading and developing in various fields. Therefore, in this paper, we realized that the field to which digital healthcare technology is not applied is the field of optometry, and implemented a digital healthcare optometry system for precise lens manufacturing. A device called Phoroptor is used to manufacture the lens, and this device sets the lens by measuring the visual acuity of the person who requested the glasses. And when the person to be measured wears glasses, a device called a PD meter is used to align the pupil center and lens focus. However, there is a limit to the convenience of precise lens production and optometry due to the absence of a database and program that can accumulate and analyze the PD measurement error, inconvenience and error due to manual control of the Phoroptor, and optometric information. Therefore, in this paper, PD meter design for more accurate PD measurement, Phoroptor design and Phoroptor control application design for automatic Phoroptor control, and a database and analysis program that automatically set lenses using optometry information for each subject had been designed. Based on this, ultimately, a digital healthcare optometry system using an optometry database has been implemented.

Enhanced and Practical Alignment Method for Differential Power Analysis (차분 전력 분석 공격을 위한 향상되고 실제적인 신호 정렬 방법)

  • Park, Jea-Hoon;Moon, Sang-Jae;Ha, Jae-Cheol;Lee, Hoon-Jae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.5
    • /
    • pp.93-101
    • /
    • 2008
  • Side channel attacks are well known as one of the most powerful physical attacks against low-power cryptographic devices and do not take into account of the target's theoretical security. As an important succeeding factor in side channel attacks (specifically in DPAs), exact time-axis alignment methods are used to overcome misalignments caused by trigger jittering, noise and even some countermeasures intentionally applied to defend against side channel attacks such as random clock generation. However, the currently existing alignment methods consider only on the position of signals on time-axis, which is ineffective for certain countermeasures based on time-axis misalignments. This paper proposes a new signal alignment method based on interpolation and decimation techniques. Our proposal can align the size as well as the signals' position on time-axis. The validity of our proposed method is then evaluated experimentally with a smart card chip, and the results demonstrated that the proposed method is more efficient than the existing alignment methods.

Comparison of dose-variation in skin due to Set-up error in case of radiation therapy for left breast using Volumetric Modulated Arc Therapy(VMAT) (좌측 유방에 대한 용적 변조 회전 방사선 치료 시 자세 오차로 인한 피부 선량)

  • Kwon, Yongjae;Park, Ryeunghwang;Kim, Seyoung;Jung, Dongmin;Baek, Jonggeol;Cho, Jeonghee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.55-62
    • /
    • 2021
  • Purpose: This study aims to contribute to the reduction of complications of breast cancer radiation therapy by analyzing skin dose differences due to Set-up error. Materials and Method: Pseudo breast was produced using a 3D printer, applied to the phantom, and images were acquired through CT. Treatment plan was carried out that the PTV, which contains 95% of the prescription dose, could be more than 95% of the volume, so that Dmax did not exceed 107% of the prescription dose. The Set-up error was evaluated by applying ±1mm/±3mm/±5mm to the X-axis, Y-axis, and Z-axis. Results: The dose-variation in skin due to Set-up error was approximately 106% to 123% compared to prescription dose, and the highest dose in skin was 49.24 Gy at 5mm Set-up error in the lateral direction of the X-axis. More than 107% of the prescription dose was the widest at 6.87 cc in skin lateral. Conclusions: If a Set-up error occurs during left breast cancer VMAT, a great difference in skin dose was shown in the lateral direction of the X-axis. If more effort is made to align the X-axis of the breast treated during CBCT registration, the dose-variation of skin will be reduced.

Study of the Acceptable Tolerances of a Window Hermetic Optical Connector (Window 밀폐형 광 커넥터의 허용 공차에 관한 연구)

  • Jeon, Woo-Sung;Jung, Mee-Suk
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.5
    • /
    • pp.210-217
    • /
    • 2022
  • In this paper, a study is conducted on the acceptable tolerance of an alignment device to reduce the optical loss caused by the alignment tolerance of a window hermetic optical connector. To increase the transmission distance of optical signals and fiber-optic communication systems, it is necessary to maintain and improve the high optical efficiency of the connectors used to bond optical fibers. In the case of the window hermetic optical connector, the optical system is aligned through an alignment device. At this time, since the two connectors are used together, each component is fixed, and further alignment is impossible. The alignment tolerance of the housing system and pin used to align the optical system of the connector causes optical loss, leading to serious problems in the fiber-optic communication system. Thus, to find the acceptable tolerance required for manufacturing the optical-connector alignment device, tolerance analysis is performed on the components of the optical connector, such as the ball lens and the window. We also implement single-mode and multimode optical-connector systems, respectively. Based on the results, we determine an acceptable tolerance value for the alignment device.

Liquid Crystal Driving of Transparent Electrode-Alignment Layer Multifunctional Thin Film by Nano-Wrinkle Imprinting of PEDOT:PSS/MWNT Nanocomposite (PEDOT:PSS/MWNT 나노복합체의 나노주름 임프린팅을 통한 투명전극-배향막 복합 기능 박막의 액정 구동)

  • Jong In Jang;Hae-Chang Jeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.1
    • /
    • pp.8-17
    • /
    • 2023
  • In conventional liquid crystal display(LCD) manufacturing process, Indium Tin Oxide(ITO) as transparent electrode and rubbing process of polyimide as alignment layer are essential process to apply electric field and align liquid crystal molecules. However, there are some limits that deposition of ITO requires high vacuum state, and rubbing process might damage the device with tribolectric discharge. In this paper, we made nanocomposite with PEDOT:PSS and MWNT to replace ITO and constructed alignment layer by nano imprint lithography with nano wrinkle pattern, to replace rubbing process. These replacement made that only one PEDOT:PSS/MWNT film can function as two layers of ITO and polyimide alignment layer, which means simplification of process. Transferred nano wrinkle patterns functioned well as alignment layer, and we found out lowered threshold voltage and shortened response time as MWNT content increase, which is related to increment of electric conductivity of the film. Through this study, it may able to contribute to process simplification, reducing process cost, and suggesting a solution to disadvantage of rubbing process.

Measurement of the Axial Displacement Error of a Segmented Mirror Using a Fizeau Interferometer (피조 간섭계를 이용한 단일 조각거울 광축방향 변위 오차 측정)

  • Ha-Lim, Jang;Jae-Hyuck, Choi;Jae-Bong, Song;Hagyong, Kihm
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.1
    • /
    • pp.22-30
    • /
    • 2023
  • The use of segmented mirrors is one of the ways to make the primary mirror of a spaceborne satellite larger, where several small mirrors are combined into a large monolithic mirror. To align multiple segmented mirrors as one large mirror, there must be no discontinuity in the x, y-axis (tilt) and axial alignment error (piston) between adjacent mirrors. When the tilt and piston are removed, we can collect the light in one direction and get an expected clear image. Therefore, we need a precise wavefront sensor that can measure the alignment error of the segmented mirrors in nm scale. The tilt error can be easily detected by the point spread image of the segmented mirrors, while the piston error is hard to detect because of the absence of apparent features, but makes a downgraded image. In this paper we used an optical testing interferometer such as a Fizeau interferometer, which has various advantages when aligning the segmented mirror on the ground, and focused on measuring the axial displacement error of a segmented mirror as the basic research of measuring the piston errors between adjacent mirrors. First, we calculated the relationship between the axial displacement error of the segmented mirror and the surface defocus error of the interferometer and verified the calculated formula through experiments. Using the experimental results, we analyzed the measurement uncertainty and obtained the limitation of the Fizeau interferometer in detecting axial displacement errors.