• Title/Summary/Keyword: algorithms

Search Result 16,428, Processing Time 0.047 seconds

A Study on the Establishment of Entropy Source Model Using Quantum Characteristic-Based Chips (양자 특성 기반 칩을 활용한 엔트로피 소스 모델 수립 방법에 관한 연구)

  • Kim, Dae-Hyung;Kim, Jubin;Ji, Dong-Hwa
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.140-142
    • /
    • 2021
  • Mobile communication technology after 5th generation requires high speed, hyper-connection, and low latency communication. In order to meet technical requirements for secure hyper-connectivity, low-spec IoT devices that are considered the end of IoT services must also be able to provide the same level of security as high-spec servers. For the purpose of performing these security functions, it is required for cryptographic keys to have the necessary degree of stability in cryptographic algorithms. Cryptographic keys are usually generated from cryptographic random number generators. At this time, good noise sources are needed to generate random numbers, and hardware random number generators such as TRNG are used because it is difficult for the low-spec device environment to obtain sufficient noise sources. In this paper we used the chip which is based on quantum characteristics where the decay of radioactive isotopes is unpredictable, and we presented a variety of methods (TRNG) obtaining an entropy source in the form of binary-bit series. In addition, we conducted the NIST SP 800-90B test for the entropy of output values generated by each TRNG to compare the amount of entropy with each method.

  • PDF

A Study on Webtoon Background Image Generation Using CartoonGAN Algorithm (CartoonGAN 알고리즘을 이용한 웹툰(Webtoon) 배경 이미지 생성에 관한 연구)

  • Saekyu Oh;Juyoung Kang
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.173-185
    • /
    • 2022
  • Nowadays, Korean webtoons are leading the global digital comic market. Webtoons are being serviced in various languages around the world, and dramas or movies produced with Webtoons' IP (Intellectual Property Rights) have become a big hit, and more and more webtoons are being visualized. However, with the success of these webtoons, the working environment of webtoon creators is emerging as an important issue. According to the 2021 Cartoon User Survey, webtoon creators spend 10.5 hours a day on creative activities on average. Creators have to draw large amount of pictures every week, and competition among webtoons is getting fiercer, and the amount of paintings that creators have to draw per episode is increasing. Therefore, this study proposes to generate webtoon background images using deep learning algorithms and use them for webtoon production. The main character in webtoon is an area that needs much of the originality of the creator, but the background picture is relatively repetitive and does not require originality, so it can be useful for webtoon production if it can create a background picture similar to the creator's drawing style. Background generation uses CycleGAN, which shows good performance in image-to-image translation, and CartoonGAN, which is specialized in the Cartoon style image generation. This deep learning-based image generation is expected to shorten the working hours of creators in an excessive work environment and contribute to the convergence of webtoons and technologies.

Class Classification and Validation of a Musculoskeletal Risk Factor Dataset for Manufacturing Workers (제조업 노동자 근골격계 부담요인 데이터셋 클래스 분류와 유효성 검증)

  • Young-Jin Kang;;;Jeong, Seok Chan
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.49-59
    • /
    • 2023
  • There are various items in the safety and health standards of the manufacturing industry, but they can be divided into work-related diseases and musculoskeletal diseases according to the standards for sickness and accident victims. Musculoskeletal diseases occur frequently in manufacturing and can lead to a decrease in labor productivity and a weakening of competitiveness in manufacturing. In this paper, to detect the musculoskeletal harmful factors of manufacturing workers, we defined the musculoskeletal load work factor analysis, harmful load working postures, and key points matching, and constructed data for Artificial Intelligence(AI) learning. To check the effectiveness of the suggested dataset, AI algorithms such as YOLO, Lite-HRNet, and EfficientNet were used to train and verify. Our experimental results the human detection accuracy is 99%, the key points matching accuracy of the detected person is @AP0.5 88%, and the accuracy of working postures evaluation by integrating the inferred matching positions is LEGS 72.2%, NECT 85.7%, TRUNK 81.9%, UPPERARM 79.8%, and LOWERARM 92.7%, and considered the necessity for research that can prevent deep learning-based musculoskeletal diseases.

A Design of Greenhouse Control Algorithm with the Multiple-Phase Processing Scheme (다중 위상 처리구조를 갖는 온실 복합환경제어 알고리즘 설계)

  • Daewook Bang
    • Journal of Service Research and Studies
    • /
    • v.11 no.2
    • /
    • pp.118-130
    • /
    • 2021
  • This study designs and validates a greenhouse complex environmental control algorithm with a multi-phase processing scheme that can combine and control actuators according to the degree of change in the greenhouse environment. The composite environmental control system is a system in which the complex environmental controller analyzes the information detected by sensors and operates appropriately actuators to maintain the crop growth environment. A composite environmental controller directs control devices driving actuators through a composite environmental control algorithm, which calculates the values necessary for the operation of the control devices. Most existing algorithms carry out control procedures on a single phase by iteration cycle, which can cause abnormal changes in the greenhouse environment due to errors in output. The proposed algorithm distributes control procedures over multiple phases: environmental control, environmental control, and device operation, and every iteration cycle, detects environmental changes in the environmental control phase first, and then combines control devices that can control the environment in the environmental control phase, and finally, performs the controls to derive the actuators in the device operation phase. The proposed algorithm is designed based on the analysis of the relationship between greenhouse environmental elements and control devices deriving actuators. According to verification analysis, the multi-phase processing scheme provides room to modify or supplement the setting value and enables the control devices to reflect changes in the associated environmental components.

A Study on the Attributes of Fashion as an Artistic Medium Characterized by Berlin's Contemporary Art - Centered on the Artworks of Julius von Bismarck and Hito Steyerl - (베를린 현대미술에 나타난 패션의 예술매체적 속성 고찰 - Julius von Bismarck와 Hito Steyerl의 작품을 중심으로 -)

  • Jaehee Jung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.2
    • /
    • pp.413-427
    • /
    • 2023
  • This study, centered on the artworks of Julius von Bismarck and Hito Steyerl, elucidates the aesthetic role that fashion plays in Berlin's contemporary art as an art medium. To this end, the following research questions are addressed: What are the characteristics of Berlin's contemporary art and contemporary fashion? What are the artistic styles and features of Julius von Bismarck and Hito Steyerl, and what attributes of fashion as an artistic medium are embedded in their works? How can the attributes of fashion, leveraged as an artistic medium in Berlin's contemporary art, be identified? The research methodologies used in this study include literature review, content analysis, and case analysis. The analytical findings of this study reveal that 1) Berlin has established itself as an international center of culture, yielding keen insights into artistry with reflections on technological media, and 2) the contemporary artworks of Julius von Bismarck and Hito Steyerl in Berlin feature some significant attributes of fashion as an art medium such as contemporary antisociality, metaphorical theatricality, and the tangible and intangible properties of algorithms.

Prediction of Scour Depth Using Incorporation of Cluster Analysis into Artificial Neural Networks (인공신경망모형과 군집분석을 이용한 교각 세굴심 예측)

  • Lee, Chang-Hwan;Ahn, Jae-Hyun;Lee, Joo Heon;Kim, Tea-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.111-120
    • /
    • 2009
  • A local scour around a bridge pier is known as one of important factors of bridge collapse. Two approaches are usually used in estimating a scour depth in practice. One is to use empirical formulas, and the other is to use computational methods. But the use of empirical formulas is limited to predict a scour depth under similar conditions to which the formulas were derived. Computational methods are currently too expensive to be applied to practical engineering problems. This study presented the application of artificial neural networks (ANN) to the prediction of a scour depth around a bridge pier at an equilibrium state. This study also investigated various ANN algorithms for estimating a scour depth, such as Backpropagation Network, Radial Basis Function Network, and Generalized Regression Network. Preliminary study showed that ANN models resulted in very wide range of errors in predicting a scour depth. To solve this problem this study incorporated cluster analysis into ANN. The incorporation of cluster analysis provided better estimations of scour depth up to 42% compared with other approaches.

Elevator Algorithm Design Using Time Table Data (시간표 데이터를 이용한 엘리베이터 알고리즘 설계)

  • Park, Jun-hyuk;Kyoung, Min-jun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.122-124
    • /
    • 2022
  • Handling Passenger Traffic is the main challenge for designing an elevator group-control algorithm. Advanced control systems such as Hyundai's Destination Selection System(DSS) lets passengers select the destination by pressing on a selecting screen, and the systems have shown great efficiency. However, the algorithm cannot be applied to the general elevator control system due to the expensive cost of the technology. Often many elevator systems use Nearest Car(NC) algorithms based on the SCAN algorithm, which results in time efficiency problems. In this paper, we designed an elevator group-control algorithm for specific buildings that have approximate timetable data for most of the passengers in the building. In that way, it is possible to predict the destination and the location of passenger calls. The algorithm consists of two parts; the waiting function and the assignment function. They evaluate elevators' actions with respect to the calls and the overall situation. 10 different timetables are created in reference to a real timetable following midday traffic and interfloor traffic. The specific coefficients in the function are set by going through the genetic algorithm process that represents the best algorithm. As result, the average waiting time has shortened by a noticeable amount and the efficiency was close to the known DSS result. Finally, we analyzed the algorithm by evaluating the meaning of each coefficient result from the genetic algorithm.

  • PDF

Optimized Hardware Design using Sobel and Median Filters for Lane Detection

  • Lee, Chang-Yong;Kim, Young-Hyung;Lee, Yong-Hwan
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.1
    • /
    • pp.115-125
    • /
    • 2019
  • In this paper, the image is received from the camera and the lane is sensed. There are various ways to detect lanes. Generally, the method of detecting edges uses a lot of the Sobel edge detection and the Canny edge detection. The minimum use of multiplication and division is used when designing for the hardware configuration. The images are tested using a black box image mounted on the vehicle. Because the top of the image of the used the black box is mostly background, the calculation process is excluded. Also, to speed up, YCbCr is calculated from the image and only the data for the desired color, white and yellow lane, is obtained to detect the lane. The median filter is used to remove noise from images. Intermediate filters excel at noise rejection, but they generally take a long time to compare all values. In this paper, by using addition, the time can be shortened by obtaining and using the result value of the median filter. In case of the Sobel edge detection, the speed is faster and noise sensitive compared to the Canny edge detection. These shortcomings are constructed using complementary algorithms. It also organizes and processes data into parallel processing pipelines. To reduce the size of memory, the system does not use memory to store all data at each step, but stores it using four line buffers. Three line buffers perform mask operations, and one line buffer stores new data at the same time as the operation. Through this work, memory can use six times faster the processing speed and about 33% greater quantity than other methods presented in this paper. The target operating frequency is designed so that the system operates at 50MHz. It is possible to use 2157fps for the images of 640by360 size based on the target operating frequency, 540fps for the HD images and 240fps for the Full HD images, which can be used for most images with 30fps as well as 60fps for the images with 60fps. The maximum operating frequency can be used for larger amounts of the frame processing.

Performance Evaluation of Object Detection Deep Learning Model for Paralichthys olivaceus Disease Symptoms Classification (넙치 질병 증상 분류를 위한 객체 탐지 딥러닝 모델 성능 평가)

  • Kyung won Cho;Ran Baik;Jong Ho Jeong;Chan Jin Kim;Han Suk Choi;Seok Won Jung;Hvun Seung Son
    • Smart Media Journal
    • /
    • v.12 no.10
    • /
    • pp.71-84
    • /
    • 2023
  • Paralichthys olivaceus accounts for a large proportion, accounting for more than half of Korea's aquaculture industry. However, about 25-30% of the total breeding volume throughout the year occurs due to diseases, which has a very bad impact on the economic feasibility of fish farms. For the economic growth of Paralichthys olivaceus farms, it is necessary to quickly and accurately diagnose disease symptoms by automating the diagnosis of Paralichthys olivaceus diseases. In this study, we create training data using innovative data collection methods, refining data algorithms, and techniques for partitioning dataset, and compare the Paralichthys olivaceus disease symptom detection performance of four object detection deep learning models(such as YOLOv8, Swin, Vitdet, MvitV2). The experimental findings indicate that the YOLOv8 model demonstrates superiority in terms of average detection rate (mAP) and Estimated Time of Arrival (ETA). If the performance of the AI model proposed in this study is verified, Paralichthys olivaceus farms can diagnose disease symptoms in real time, and it is expected that the productivity of the farm will be greatly improved by rapid preventive measures according to the diagnosis results.

Forecasting the Busan Container Volume Using XGBoost Approach based on Machine Learning Model (기계 학습 모델을 통해 XGBoost 기법을 활용한 부산 컨테이너 물동량 예측)

  • Nguyen Thi Phuong Thanh;Gyu Sung Cho
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.1
    • /
    • pp.39-45
    • /
    • 2024
  • Container volume is a very important factor in accurate evaluation of port performance, and accurate prediction of effective port development and operation strategies is essential. However, it is difficult to improve the accuracy of container volume prediction due to rapid changes in the marine industry. To solve this problem, it is necessary to analyze the impact on port performance using the Internet of Things (IoT) and apply it to improve the competitiveness and efficiency of Busan Port. Therefore, this study aims to develop a prediction model for predicting the future container volume of Busan Port, and through this, focuses on improving port productivity and making improved decision-making by port management agencies. In order to predict port container volume, this study introduced the Extreme Gradient Boosting (XGBoost) technique of a machine learning model. XGBoost stands out of its higher accuracy, faster learning and prediction than other algorithms, preventing overfitting, along with providing Feature Importance. Especially, XGBoost can be used directly for regression predictive modelling, which helps improve the accuracy of the volume prediction model presented in previous studies. Through this, this study can accurately and reliably predict container volume by the proposed method with a 4.3% MAPE (Mean absolute percentage error) value, highlighting its high forecasting accuracy. It is believed that the accuracy of Busan container volume can be increased through the methodology presented in this study.