• Title/Summary/Keyword: alginate bead

Search Result 137, Processing Time 0.02 seconds

Modeling the effect of mass transfer on the kinetics of fructo-oligosaccharide production by immobilized cells (고정화 세포에 의한 Fructo-oligosaccharides 생산 반응메카니즘에서 물질전달 영향에 대한 수학적 모델)

  • 윤종원;전영중이민규송승구
    • KSBB Journal
    • /
    • v.8 no.3
    • /
    • pp.266-271
    • /
    • 1993
  • The effective diffusion coefficients of glucose, sucrose and fructo-oligosaccharides in Ca-alginate gel beads at high concentration of sucrose solutions were investigated at $50^{\circ}C$. A mathematical model for the kinetics of fructo-oligosaccharide production using immobilized cells was proposed and compared with experimental results varying the bead size, the substrate concentration and the bead ratio. Very low values of diffusion coefficients ranging $1.2-7.6\times10^{-7}\textrm{cm}^2$/sec were obtained, and the predicted results were in good agreement with experimental ones in all cases tested.

  • PDF

Effects of Sodium Alginate Concentration on Physical and Sensory Characteristics of Persimmon Calcium Alginate Beads (소디움 알지네이트 농도에 따른 감 칼슘 알지네이트 비드의 물리적 및 관능적 특성)

  • Yong, Dong-Hee;Song, Min-Kyung;Yoon, Hye-Hyun
    • Korean journal of food and cookery science
    • /
    • v.27 no.5
    • /
    • pp.497-505
    • /
    • 2011
  • The purpose of this study was to apply molecular gastronomy and spherification methodology to persimmon deserts. We prepared 'persimmon calcium alginate beads' and investigated their physical and sensory characteristics by adding different concentrations of sodium alginate (0.4, 0.6, 0.8, and 1.0%). Lightness and yellowness decreased significantly as the concentration of sodium alginate increased. However hardness, springiness, chewiness, cohesiveness, and resilience but not adhesiveness tended to increase as the concentration of sodium alginate increased. The thickness of the beads increased as the concentration of sodium alginate increased. In contrast, the thickness of the membrane decreased as the concentration of alginate increased from 0.8 to 1.0% suggesting that the amount of sodium alginate had reached a critical point. Quantitative descriptive analysis showed that voluminosity, springiness, hardness, chewiness, and residue tended to increase as the concentration of sodium alginate increased. Overall preference reached a peak at 0.4% sodium alginate.

Chlorphenesin Galactoside Production using Immobilized β-galactosidase-producing Escherichia coli (고정화된 β-galactosidase 생산 대장균을 이용한 chlorphenesin galactoside 생산)

  • Jung, Kyung-Hwan
    • Journal of Life Science
    • /
    • v.25 no.10
    • /
    • pp.1164-1168
    • /
    • 2015
  • Previous research showed that chlorphenesin galactoside (CPN-Gal), a preservative in cosmetics, was safer than CPN against human skin cells [9]. To establish a stable and long-term process for CPN-Gal production, we investigated the repeated-batch process. In this process, β-gal-producing recombinant Escherichia coli cells were immobilized in calcium alginate beads, and CPN was converted to CPN-Gal by the transgalactosylation reaction. The process was conducted in a 300 ml flask, which contained E. coli cell-immobilized alginate beads, 33.8 mM of CPN, and 400 g/l of lactose. The pH and temperature were 7.0 and 40℃, respectively. During the repeated-batch operation, four consecutive batch operations were conducted successfully until 192 hr. The conversion yield of CPN to CPN-Gal was 64% during 192 hr, which was higher than the values in previous reports [3, 13]. Thereafter, however, the conversion yield gradually decreased until the operation was finished at 336 hr. Western blotting of immobilized E. coli cells revealed that β-gal gradually decreased after 192 hr. In addition, alginate beads were cracked when the operation was finished. It is probable that, including this loss of E. coli cells by cracks, deactivation, and product inhibition of E. coli β-gal might lead to a gradual decrease in the production of CPN-Gal after 192 hr. However, as the purification of β-gal is not necessary with β-gal-producing recombinant E. coli cells, β-gal-producing E. coli cells might be a practical and cost-effective approach for enzymatically synthesizing CPN-Gal. It is expected that this process will be extended to long-term production process of CPN-Gal for commercialization.

Ethanol Production an Immobilized Themotolerant Mutant of Brettanomyces custersii H1-39 from Wood Hydrolyzate Media (목질계 당화액배지로부터 고온내성 변이주 Brettanomyces custersii H1-39의 고정화에 의한 에탄올생산)

  • 박승원;홍영기;김승욱;홍석인
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.3
    • /
    • pp.172-179
    • /
    • 2000
  • Bretlanomyces C!tstersii Hl-39 mutant was immobilized with various caniers. Immobilized mutant Hl-39 produced more ethanol and showed higher productivity and cell concentration than those of free 81-39 in 3.4% hydrolyzate of wood-chips at different temperatures ($37^{\circ}C$, $40^{\circ}C$ and $43^{\circ}C$). At $37^{\circ}C$, ethanol concentration produced by mutant H1-39 immobilized in Ca-alginate and ARG(l % Ca-alginate, 1.67% bentonite, 0.33% glutaraldehyde) bead were higher than those produced by the other earners (ACG ; 1 % CaHalginate. ] .67% celite R-634 , 0.33% glutaraldehyde, ABP ; 1 % Ca-alginate. 1.67% bentonite, 0.33% pectin. ACP: 1 % Ca-alginate, ] .67% celiLe R-634, 0.33% pecLin). The highest value of productivity(l.23 ) was obtained by using ABG beads. At $40^{\circ}C$, ethanol conccntration and productivity obtained by ABC beads ,>,"ere 15.2 glL and 0.84 gl L.h, respectively, which showed the highest value compared to other carriers. Particularly, productivity of ilmnobilized ceIl was increased up to 90% as compared to that offree cell. On the other hand, ABP(l % Ca-alginate+L67% bentonile+O.33% pectin) beads gave the best resulLs at $43^{\circ}C$ for production of ethanol and productivity, which were 13.8 g!l and 0.77 g/l h, respectively.ively.

  • PDF

Improvement of Removal Characteristics of Uranium by the Immobilization of Diphosil Powder onto Alginate Bed (다이포실 분말수지의 비드화에 의한 우라늄 제거특성 개선)

  • Kim Kil-Jeong;Shon Jong-Sik;Hong Kwon-Pyo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.133-138
    • /
    • 2006
  • Chemical wastes containing small amounts of uranium can not be disposed of them after treatment as an industrial waste, because the uranium concentration in the final dry cake exceeds the exemption level. Especially for the removal of uranium in this study, the method for immobilizing Diphosil powder within alginate beads is adopted to make a bead form from a powdered resin. Sodium alginate bead itself showed a capability to uptake uranium to above 60%, but the value was decreased to below 30% after equilibrium. The adsorption rate of uranium increased with the increasing content of Diphosil in the sodium alginate bead. Diphosil resin itself showed very fast uptake of uranium from early stages, and then the rates were leveled off. Diphosil bead showed an improved capability to uptake uranium considering the pure Diphosil content in the composite bead, and provide a considerable potential for further applications of a continuous process by using Diphosil as a bead form.

  • PDF

Immobilization of As and Pb in Contaminated Soil Using Bead Type Amendment Prepared by Iron NanoparticlesImpregnated Biochar (철 나노 입자가 담지된 바이오차 기반 비드 형태 안정화제를 이용한 비소 및 납 오염토양의 안정화)

  • Choi, Yu-Lim;Kim, Dong-Su;Kang, Tae-Jun;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.4
    • /
    • pp.247-257
    • /
    • 2021
  • In this work, Iron Nano-Particles Impregnated BioChar/bead (INPBC/bead) soil amendment was developed to increase biochar's reactivity to As in soil and preventing possible wind loss. Prior to preparation of INPBC/bead, INPBC was produced utilizing lignocellulosic biomass and Fe(III) solution in a hydrothermal method, followed by a calcination process. Then, the bead type amendment, INPBC/bead was produced by cross-linking reaction of alginate with INPBC. FT-IR, XRD, BET, and SEM-EDS analyses were utilized to characterize the as-synthesised materials. The particle size range of INPBC/bead was 1-4 mm, and different oxygen-containing functional groups and Fe3O4 crystalline phase were produced on the surface of INPBC/bead, according to the characterization results. The soil cultivation test was carried out in order to assess the stabilization performance of INPBC/bead utilizing As and Pb-contaminated soil obtained from an abandoned mining location in South Korea. After 4 weeks of culture, TCLP and SPLP extraction tests were performed to assess the stabilization efficacy of the amendment. The TCLP and SPLP findings revealed that raising the application ratio improved stabilizing efficiency. The As stabilization efficiency was determined to be 81.56 % based on SPLP test findings for a 5% in (w/w) INPBC/bead treatment, and the content of Pb in extracts was reduced to the limit of detection. According to the findings of this study, INPBC/bead that can maintain pH of origin soil and minimize wind loss might be a potential amendment for soil polluted with As and heavy metals.

Preparation and Characterization of Alginate-Chitosan Microsphere for Controlled Delivery of Silver Sulfadiazine (설파디아진은의 방출제어를 위한 알지네이트-키토산 미립구의 제조 및 특성)

  • Cho, Ae-Ri
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.2
    • /
    • pp.101-106
    • /
    • 2001
  • Alginate-chitosan (anion-cationic polymeric complex) was prepared to control the release rate of silver sulfadiazine (AgSD). Na-alginate (2%) solution containing AgSD was gelled in $CaCl_2$ solution. The gel beads formed were immediately encapsulated with chitosan (CS). The gel matrix and membrane were then reinforced with chondroitin-6-sulfate (Ch6S). Release rate of AgSD from the gel matrix was investigated by placing alginate beads in the sac of cellulose membrane simmered in HEPES-buffer solution. The concentration of AgSD released was analyzed by UV at 264 nm. Incorporation capacity of AgSD in Ca-alginate gel was more than 90%. Alginate-Ch6S-CS could control the release rate of AgSD. The amount of AgSD release was dependent on the AgSD loading dose. Incorporation of tripolyphosphate (polyanionic crosslinker) onto the alginate-Ch6S-CS bead increased the release rate of AgSD. Collagen-coating had no influence on the AgSD release rate. Alginate-Ch6S-CS beads with a sufficiently high AgSD encapsulation were capable of controlling the release of the drug over 10 days. In summary, alginate-Ch6S-CS beads could be used as a sustained delivery for AgSD and provide local targeting with low silver toxicity and patient discomfort.

  • PDF

Iron succinyl casein encapsulated alginate beads for the treatment of iron deficiency anemia

  • Ko, Hye-Ran;Oungbho Kwunchit;Park, Jeong-Sook;Kim, Chong-Kook
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.247.1-247.1
    • /
    • 2003
  • Iron deficiency is the most common nutritional problem worldwide. Oral iron supplementation programs have failed because of noncompliance and gastrointestinal toxicity. The purpose of this study was to explore the possibility of alginate gel bead as an oral controlled release system of iron supplements and increase the stability of iron succinyl casein (ISC). Alginate beads containing ISC were prepared by the gelation of sodium alginate with calcium cations. The release profiles of ISC were investigated according to the concentration of polymer, the drug/sodium alginate ratio, the concentration and type of cation, curing time and pH of calcium chloride solution. (omitted)

  • PDF

Development of the Calcium Alginate Bead Immobilized with $TiOSO_4$ for the Efficient Removal of Phosphorous (Phosphorous의 효율적인 제거를 위한 $TiOSO_4$ 고정화 Calcium Alginate Bead의 제조기법에 관한 연구)

  • Choi, Jae-Woo;Lee, Seung-Yeon;Chung, Seung-Gun;Lee, Sang-Hyup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.3
    • /
    • pp.162-166
    • /
    • 2011
  • Phosphorous contaminated in the effluent from sewage treatment plants can cause the eutrophication in surface water bodies. In this study, a powder of titanium oxysulfate-sulfuric acid made of ion-exchange materials was immobilized in an alginate gel and this material was examined to evaluate its phosphorous removal efficiency. Equilibrium and kinetic studies were carried out to quantify the adsorption capacity and time dependent removal rate of phosphorous. Adsorption isotherms and kinetic parameters were obtained for the entrapped titanium beads with three different methods. Equilibrium data were analyzed using Langmuir adsorption isotherm model and found to be well fitted to the model. The maximum adsorption capacity for phosphorous by the titanium bead synthesized with the solution method was 92.26 mg/g. Kinetic data followed a pseudo-second-order kinetic model. Due to the low production cost and high adsorption capacity, the titanium bead synthesized by the solution method has a potential to be utilized for the cost-effective removal of phosphorous from wastewater.