• 제목/요약/키워드: algebraic structure

검색결과 196건 처리시간 0.026초

Static stability and of symmetric and sigmoid functionally graded beam under variable axial load

  • Melaibari, Ammar;Khoshaim, Ahmed B.;Mohamed, Salwa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 제35권5호
    • /
    • pp.671-685
    • /
    • 2020
  • This manuscript presents impacts of gradation of material functions and axial load functions on critical buckling loads and mode shapes of functionally graded (FG) thin and thick beams by using higher order shear deformation theory, for the first time. Volume fractions of metal and ceramic materials are assumed to be distributed through a beam thickness by both sigmoid law and symmetric power functions. Ceramic-metal-ceramic (CMC) and metal-ceramic-metal (MCM) symmetric distributions are proposed relative to mid-plane of the beam structure. The axial compressive load is depicted by constant, linear, and parabolic continuous functions through the axial direction. The equilibrium governing equations are derived by using Hamilton's principles. Numerical differential quadrature method (DQM) is developed to discretize the spatial domain and covert the governing variable coefficients differential equations and boundary conditions to system of algebraic equations. Algebraic equations are formed as a generalized matrix eigenvalue problem, that will be solved to get eigenvalues (buckling loads) and eigenvectors (mode shapes). The proposed model is verified with respectable published work. Numerical results depict influences of gradation function, gradation parameter, axial load function, slenderness ratio and boundary conditions on critical buckling loads and mode-shapes of FG beam structure. It is found that gradation types have different effects on the critical buckling. The proposed model can be effective in analysis and design of structure beam element subject to distributed axial compressive load, such as, spacecraft, nuclear structure, and naval structure.

IMT-2000 Test-bed 상에서 CS-ACELP 음성부호화기 실시간 구현 (Real-time Implementation of CS-ACELP Speech Coder for IMT-2000 Test-bed)

  • 김형중;최송인;김재원;윤병식
    • 한국정보통신학회논문지
    • /
    • 제2권3호
    • /
    • pp.335-341
    • /
    • 1998
  • 본 논문에서는 CS-ACELP(Conjugate Structure Algebraic Code Excited Linear prediction) 음성부호화기의 실시간 구현에 관하여 논한다. CS-ACELP 알고리즘은 ITU-T에서 G.729로 표준화되었다. CS-ACELP 음성부호화 알고리즘의 실시간 구현은 16비트 정수형 DSP 칩을 사용하였다. 16비트 정수형 DSP 칩상에 구현하기 위하여, CS-ACELP 알고리즘의 정수형 시뮬레이션을 사용하였다. CS-ACELP 음성부호화기에 포함된 입출력기능과 통신 기능을 설명한다. DSP Evaluation board를 사용하여 CS-ACELP 음성부호화기를 개발하였고 IMT-2000 Test-bed를 사용하여 검증하였다.

  • PDF

다구찌 품질손실개념에 의한 다특성치 품질손실함수 도출의 분석적 접근방법 (An Analytical Approach to Derive the Quality Loss Function with Multi-characteristics by Taguchi's Quality Loss Concept)

  • 배후석;임채관
    • 품질경영학회지
    • /
    • 제48권4호
    • /
    • pp.535-552
    • /
    • 2020
  • Purpose: The main theme of this study is to derive a specific quality loss function with multiple characteristics according to the same analytical structure as the single characteristic quality loss function of Taguchi. In other words, it presents an analytical framework for measuring quality costs that can be controlled in practice. Methods: This study followed the analytical methodology through geometric, linear algebraic, and statistical approaches Results: The function suggested by this study is as follows; $$L(x_1,x_2,{\cdots},x_t)={\sum\limits_{i=1}^{t}}k_i\{x_i+{\sum\limits_{j=1}^{t}}\({\rho}_{ij}{\frac{d_i}{d_j}}\)x_j\}x_i$$ Conclusion: This paper derived the quality loss function with multiple quality characteristics to expand the usefulness of the Taguchi quality loss function. The function derived in this paper would be more meaningful to estimate quality costs under the practical situation and general structure with multiple quality characteristics than the function by linear algebraic approach in response surface analysis.

Design of Optimal Digital IIR Filters using the Genetic Algorithm

  • Jang, Jung-Doo;Kang, Seong G.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권2호
    • /
    • pp.115-121
    • /
    • 2002
  • This paper presents an evolutionary design of digital IIR filters using the genetic algorithm (GA) with modified genetic operators and real-valued encoding. Conventional digital IIR filter design methods involve algebraic transformations of the transfer function of an analog low-pass filter (LPF) that satisfies prescribed filter specifications. Other types of frequency-selective digital fillers as high-pass (HPF), band-pass (BPF), and band-stop (BSF) filters are obtained by appropriate transformations of a prototype low-pass filter. In the GA-based digital IIR filter design scheme, filter coefficients are represented as a set of real-valued genes in a chromosome. Each chromosome represents the structure and weights of an individual filter. GA directly finds the coefficients of the desired filter transfer function through genetic search fur given filter specifications of minimum filter order. Crossover and mutation operators are selected to ensure the stability of resulting IIR filters. Other types of filters can be found independently from the filter specifications, not from algebraic transformations.

MEMS 공진기의 고주파 응답해석을 위한 고효율 해석기 (A high Efficient Solver for High-Frequency Response Analysis of MEMS Resonators)

  • 고진환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.467-472
    • /
    • 2007
  • A modern MEMS resonator is a micro-scale structure operated over a high frequency range. In order to predict its resonant behavior in a design process, High-frequency response analysis (Hi-FRA) is demanded. Algebraic substructuring (AS) is known as a fast numerical technique to construct an eigenspace for FR and frequency sweep (FS) algorithm efficiently solves the frequency response system projected on the eigenspace. However, the existing FS algorithm using AS is developed for low-FRA, say over the range 1Hz-2KHz. In this work, we extend the FS algorithm using AS for FRA over an arbitrary frequency range. Therefore, it can be efficiently applied to systems operated at a high frequency, say over the range 230MHz-250MHz. The success of the proposed method is demonstrated by Hi-FRA of a checkerboard resonator.

  • PDF

High precision integration for dynamic structural systems with holonomic constraints

  • Liu, Xiaojian;Begg, D.W.;Devane, M.A.;Zhong, Wanxie
    • Structural Engineering and Mechanics
    • /
    • 제5권3호
    • /
    • pp.283-295
    • /
    • 1997
  • This paper presents a high precision integration method for the dynamic response analysis of structures with holonomic constraints. A detail recursive scheme suitable for algebraic and differential equations (ADEs) which incorporates generalized forces is established. The matrix exponential involved in the scheme is calculated precisely using $2^N$ algorithm. The Taylor expansions of the nonlinear term concerned with state variables of the structure and the generalized constraint forces of the ADEs are derived and consequently, their particular integrals are obtained. The accuracy and effectiveness of the present method is demonstrated by two numerical examples, a plane truss with circular slot at its tip point and a slewing flexible cantilever beam which is currently interesting in optimal control of robot manipulators.

축류압축기의 Navier-Stokes설계를 위한 계산격자점 생성기법 연구 (Computational Grid Generation for Navier-Stokes Design of Axial-Flow Compressors)

  • 정희태
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1997년도 추계 학술대회논문집
    • /
    • pp.38-42
    • /
    • 1997
  • A multiblock grid generation has been applied to a Navier-Stokes design procedure of a axial-flow compressors. A multiblock structure simplifies the creation of structured H-grids about complex turbomachinery geometries and facilitate the creation of a grid in the tip flow region. The numerical algorithm adopts the combination of the algebraic and elliptic method to create the internal grids efficiently and quickly. The input module is made of the results of the preliminary design, i.e., flow-path, aerodynamic conditions along the spanwise direction, and the blade profile data. The final grids generated from each module of the system are used as the preprocessor for the performance prediction of the sectional blade, the blade-stacking process and the three-dimensional flow simulation inside the blade passage. Application to the blade design of the LP compressor was demonstrated to be very reliable and practical in support of design activities. This customized system are coupled strongly with the design procedure of the turbomachinery cascades using the Navier-Stokes technique.

  • PDF

WALSH함수의 접근에 의한 분포정수계의 파라메타 추정 (An Approach to Walsh Functions for Parameter Estimation of Distributed Parameter Systems)

  • 안두수;배종일
    • 대한전기학회논문지
    • /
    • 제39권7호
    • /
    • pp.740-748
    • /
    • 1990
  • In this paper, we consider the problem of parameter estimation, i.e., definding the internal structure of a linear distribution parameter system from its input/output data. First, a linear partial differential equation describing the system is double-integrated with respect to two variables and then transformed into an integral equation. Next the Walsh Operation Matrix for Walsh function and their integration are introduced to transform the integral equation into algebraic simultaneous equations. Finally, we develop an algorithm to estimate the parameters of the linear distributed parameter system from the simple linear algebraic simultaneous equations. It is also shown that our algorithm could be effective in real time data processing since it uses the Fast Walsh Transform.

  • PDF

다단축류압축기의 공력성능 예측용 계산격자 생성기법 연구 (Computational Grid Generation for Aero-Performance Prediction of Multi-staged Axial Compressors)

  • 정희택;김주섭
    • 동력기계공학회지
    • /
    • 제2권1호
    • /
    • pp.39-44
    • /
    • 1998
  • Computational grids used in the numerical simulation of multi staged turbomachinery flow fields are generated. A multiblock structure simplifies the creation of structured H-grids about complex turbomachinery geometries and facilitate the creation of a grid for multi-row topologies. The numerical algorithm adopts the combination of the algebraic and elliptic method to create the internal grids efficiently and quickly. The input module is made of the results of the preliminary design, i.e., flow-path, aerodynamic conditions along the spanwise direction, and the blade profile data. The final grids generated from each module of the system are used as the preprocessor for the performance prediction of the single row cascades and the flow simulation inside the multi staegd blade passage. Application to low pressure compressor of industrial gas turbine engines was demonstrated to be very reliable and practical in support of design activities.

  • PDF

Ternary Distributive Structures and Quandles

  • Elhamdadi, Mohamed;Green, Matthew;Makhlouf, Abdenacer
    • Kyungpook Mathematical Journal
    • /
    • 제56권1호
    • /
    • pp.1-27
    • /
    • 2016
  • We introduce a notion of ternary distributive algebraic structure, give examples, and relate it to the notion of a quandle. Classification is given for low order structures of this type. Constructions of such structures from 3-Lie algebras are provided. We also describe ternary distributive algebraic structures coming from groups and give examples from vector spaces whose bases are elements of a finite ternary distributive set. We introduce a cohomology theory that is analogous to Hochschild cohomology and relate it to a formal deformation theory of these structures.