• Title/Summary/Keyword: algae growth

Search Result 567, Processing Time 0.036 seconds

A Study on Protection Plan of Eutrophication in Fresh Water Environment by Development of Methods for Algal Growth Potential test (I) -Morphology and Growth Characteristics of Isolated algae- (조류생산잠재력조사 방법개발에 의한 육수환경의 부영양화 방지대책에 관한 연구(I) -순수분리종의 형태 및 증식특성-)

  • 위인선;나철호;이종빈;주현수
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.1
    • /
    • pp.18-27
    • /
    • 1997
  • The isolation, morphological study and growth characteristics of the algae were investigated from Lake Chuam. The isolated algae were applied the Agal Growth Potential test. The method of isolation and purification of the algae were used to Agar plating(AP), nutrient enrichment(NE), dilution(DI) and micro capillary technique(MC). Total isolated algae were 21 species. They were composed of Cyanophyceae, Dinophyceae, Bacillariophyceae, Euglenophyceae and Chlorophyceae. The numbers of algal strain by isolation technique were highest in dilution(21 species), and those of the rests were showed in order of NE > MC > AP. The sizes of isolated Selenastrum and Scenedesmus were $1.8\pm 1.4 \mu m$, $3.3\pm 0.9 \mu m$ in diameter and $6.4\pm 2.3 \mu m$, $13.6\pm 1.9 \mu m$ in length respectively. The morphology of isolated algae and NIES-collection strain was very similar each other, but the size was smaller isolated algae than that of NIES-collection. The optimum culture condition of isolated Selenastrum and Scenedesmus was about 30$\circ$C(25$\circ$C-35$\circ$C) in temperature and the maximum growth was appeared between 7,000 lux and 8,000 lux in the light intensity. The comparison of $\mu$(specific growth rate) on the concentration of nutrients such as nitrate and phosphate, isolated Selenastrum was appeared maximum it at 1.0 mg $NO_3-N/l$ but NIES-collection strain was showed 95% of maximum it at same nitrate concentration. Maximum g of isolated algae and NIES-collection strain in Scenedesmus onto nitrate concentration were very similar with the result of selenastrum. The specific growth rates of isolated algae and NIES-collection strain on the gradient concentration of phosphate were showed 0.72/day and 0.70/day at 0.02 mg $PO_4-P/l$ in Selenastrum but those of Scenedesmus were appeared 0.61/day and 0.57/day at same concentration $PO_4-P$.

  • PDF

Melon Growth Enhancement by Fucoidan and Fucoidan Decomposing Bacteria (후코이단과 후코이단 이용 박테리아의 멜론 성장 촉진 효과 검증)

  • Yang, Sohee;Gil, Yeji;Oh, Heejeong;Koo, Yeonjong
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.1
    • /
    • pp.20-25
    • /
    • 2020
  • BACKGROUND: Marine algae is a productive organism that is consumed as a nutritious food. However, large amounts of unused portions of the algae are incinerated as trash or dumped in the sea, causing pollution. Recycling algae is important for saving resources and conserving the environment. In this study, the fucoidan which is a major carbohydrate of marine algae was tested as a source of fertilizer for farming. METHODS AND RESULTS: The growth rate of the melon was examined after treating fucoidan and the melon growth factors, weight and length of stem were measured. To discover the mechanism of melon growth promotion of fucoidan, bacteria that decomposed fucoidan were isolated from soil and abalone. Bacillus wiedmannii and Stenotrophomonas pavanii were isolated from terrestrial soil and Pseudomonas sp. was isolated from abalone. Among these three bacteria, Pseudomonas sp. had the highest and most specific fucoidan-decomposing activity. When Pseudomonas sp. was treated with fucoidan on melon-growing soil, the growth of melon was relatively improved compared to the treatment with fucoidan alone. CONCLUSION: We found that fucoidan, the main carbohydrate of marine algae, promoted melon growth. Fucoidan-decomposing microorganisms were isolated from terrestrial soil and marine organism, and we found that these bacteria stimulated the effect of melon growth promotion of marine algae. This is the first report that confirms the fertilizer effect of marine algae and shows the use of bacteria with marine algae.

Study on the Phosphorus Content of Algae (藻類細胞內 燐含量에 관한 연구)

  • Song, Jun-Sang;Lee, Mun-Ho;Yang, Sang-Yong
    • Journal of Environmental Health Sciences
    • /
    • v.14 no.1
    • /
    • pp.55-61
    • /
    • 1988
  • Study was conducted on how the phosphorus content of algae changed by the algal species and the algal growth conditions. Phosphorus contents were not so different by algal species if algae grow on the same phosphorus concentration. Phosphorus content of algae grown on higher P medium was higher than that of algae grown on lower P medium. Algae excrete P-compounds from cell to the medium when the dissolved reactive phosphorus is depleted in the medium, and the excreted P-compounds were decomposed by algae and used for the growth of algae. Phosphorus content of algae grown in the P-limited condition was about 5-1 $\mu$gP/mg dry wt., but that of algae grown in the condition not P-lirnited was above 10$\mu$gP/rng dry wt.

  • PDF

Effects of Algae Growth on the Effluent of Wastewater Treatment Systems by Using Water Hyacinth (조류 성장이 부레옥잠을 이용한 폐수처리공법의 유출수에 미치는 영향)

  • Lee, Byung-Hun;Lee, Nam-Hee;Kim, Jeong-Suk
    • Journal of Environmental Science International
    • /
    • v.1 no.2
    • /
    • pp.81.2-92
    • /
    • 1992
  • Growing algae spread over open water surface of water hyacinth system the leaves of hyacinth prevented the passage of sunlight through the water surface. The objectives of this study were to investigate the effects of the algae growth on the effluent of water hyacinth wastewater treatment systems operated with the variation of an organic loading rate between 190 to 550 kg COD/ha.day. The effluent from the system contained algae was discharged for about 2-3 weeks from the beginning of experimental operation of water hyacinth systems. BOD and 55 concentration of effluents during algae growthing periods were higher than those during the period of algae control. But nitrogen and phosphrous romoval efficiencies during in algae growthing periods were slighty higher than those during the period of algae control.

  • PDF

A Study on Formation and Concentration of Trihalomethanes in Water Treatment Process (정수처리공정의 THMs 생성과 농도변화에 관한 연구)

  • 조덕희;안승구
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.2
    • /
    • pp.28-34
    • /
    • 1997
  • This study was carried out to investigate the effects of prechlorination and algae growth on THMs generation. The sample water obtained from Paldang Dam which is a main source of raw water for the Seoul metropolitan area. THMs concentration in the sample water was investigated in water treatment process prechlorifiation, chemical coagulation, and sand filtration. And also, THMs concentration were analyzed in the water which cultured algae in laboratory. The results were as follows 1. The THMs concentration produced by prechlorination unit process were increased in control (not purified) but decreased in process of purification. 2. The THMs concertration can reduce by increasing the number of cleaning filters. 3. The main precursor in raw water for the THMs generation was supplied by algae growth. So as to reduce the THMs concentration in water supplying system, it is the best method to manage algae growth in water body of Paldang reservoir.

  • PDF

Development of a Functional Mortar for Restraining Surface Algal Growth

  • Park, Soon-young;Kim, Jinhyun;Kang, Hojeong
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.2
    • /
    • pp.82-87
    • /
    • 2018
  • Proliferation of algae on the surface of concrete or mortar in aquatic habitat has a negative impact on maintenance of concrete-based structures. Growth of algae may decrease stability of structure by bio-deterioration. In this study, we developed a functional mortar for restraining bio-deterioration by using $Cu^{2+}$ ion. The mortar contains soluble glass beads made of $Cu^{2+}$ ion, which can dissolve into water slowly. Mortars prepared with different ratio of glass beads (0, 2, 5, 10, and 15%) were placed in a culture medium with algae and incubated over a month period. Water chemistry, chlorophyll-a, and extracellular enzyme activities were measured. The incubation was conducted in both freshwater and seawater conditions, to assess applicability to both aquatic conditions. Overall, mortar with Cu glass exhibited lower chlorophyll-a content, suggesting that the functional mortar reduced algal growth. DOC concentration increased because debris of dead algae increased. Cu glass also decreased phosphatase activity, which is involved in the regeneration of inorganic P from organic moieties. Since, P is often a limiting nutrient for algal production, algal growth may be inhibited. Activities of ${\beta}$-glucosidase and N-acetylglucosaminidase were not significantly affected because carbon and nitrogen mineralization may not be influenced by the Cu glass beads. Our study suggests that functional mortar with Cu glass beads may reduce the growth of algae on the surface, while it has little environmental impact.

Packaging of Bread in Paper Made From Edible Red Algae and Coated with Antimicrobials Retards Microbial Growth in Bread during Storage

  • Ku, Kyoung-Ju;Hong, Yun-Hee;Seo, Yung-Bum;Song, Kyung-Bin
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.1
    • /
    • pp.51-53
    • /
    • 2008
  • To utilize edible red algae paper for food packaging, red algae paper coated with green tea extract or catechin was prepared and microbial growth in bread wrapped with the paper was determined during storage. The paper coated with green tea extract or catechin had antimicrobial activity against Escherichia coli. Packaging of bread with the red algae paper coated with green tea extract or catechin decreased the populations of total aerobic bacteria and yeast and mold after 2 days of storage by 0.41 and 0.63 log CFU/g, respectively, compared to the control. These results suggest that bread can be packaged by edible red algae paper coated with green tea extract or catechin, resulting in inhibit microbial growth during storage.

Community Structure and Productivity of Phytobenthos in Juckdo (Eastern Coast of Korea) II. Seasonal Changes of Algal Vegetation in Relation to Annual Growth of Large Brown Algae (저서식물의 군집구조와 생산성(동해안, 죽도) II. 해조류 식생의 계절변화와 대형갈조류 성장상태의 관계)

  • 고철환
    • Journal of Plant Biology
    • /
    • v.26 no.4
    • /
    • pp.181-190
    • /
    • 1983
  • Seasonal occurrence of benthic algae and changes of subtidal vegetation were studied for their species composition, diversity and biomass during 1982 and 1983 at several selected sites at Juckdo Island (38$^{\circ}$12'N, 128$^{\circ}$32'E), eastern coast of Korea. Three large brown algae which played a role in change of algal vegetation through their great biomass were investigated with regard to their seasonal growth. Large brown algae such as Undaria pinnatifida, Costaria costata, Laminaria japonica, Agarum cribrosum, Sargassum confusum and S. hornerii constitute the major portion of vegetation in this area throughout the year. Algal vegetation in spring time is characterized by dominance of species U. pinnatifida and C. costata, whereas the summer vegetation by S. confusum and S. hornerii. In autumn large brown algae are shedded and only small algae, such as Chondrus ocellatus and Grateloupia filicina, remain. The vegetation in winter is dominated by the growth of U. pinnatifida and C. costata. Monthly changes in mean length and weight of randomly collected U. pinnatifida, C. costata and S. confusum are as follows; U. pinnatifida occurs from December to June and shows their maximum growth during March (120 cm in length, 201 g/individual in wet weight), its maximum growth rate is 1.4 cm/day, 3.3 g/day in this month. The growth season of C. costata is very similar to U.pinnatifida, but their average maximum length(110 cm) and weight (106 g/ind.) are lower than U. pinnatifida. The greatest growth rate is during March (1.8 cm/day, 2.0g/day). S. confusum is present throughout the year and reaches the maximum growth (102 cm, 63g/ind.) in July. Maximum growth rate (1.5 cm/day, 1.2 g/day) occurs also during this month. U. pinnatifida and C. costata show different months of maximum growth evidently during the two year. This seems to be caused by a considerable damage to the local vegetation followed by heavy storm in February 1983.

  • PDF

Development of a Functional Mortar for Algae Growth Restraining by Using Soluble Glass (수용성 유리를 이용한 조류 생장 억제형 기능성 모르타르의 개발)

  • Kim, Jun Hwan;Kang, Hojeong;Choi, Se Young;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.791-799
    • /
    • 2015
  • This study focuses on the algae growth restraining. Many researches on a critical damage from algae growth are published, but it is hard to find how th restrain. Abnormal algae increasing is a problem, because it makes red tides, biodeterioration, etc. Therefore this study aims to decrease the damage from algae growth. Some metal ions have been used microorganism killing materials from old times. Especially, Cu ions are highly effective. Based on these uses of the metal ions, a functional mortar which restrains algae growth is developed. The mortar contains soluble glass which dissolve in water. The soluble glass was made of Cu ions and phosphates. When the soluble glass is dissolved, Cu ions are soaked out stably from the soluble glass. Culture mediums which incubate algae were made to evaluate the developed mortar specimens. Culture mediums were filled with fresh water and sea water. Algae were incubated for fourteen days in culture mediums. The evaluating methods are measuring volume of the dissolved organic carbon and the chlorophyll. Using these two measurements, the mortar specimens are judged that can restrain algae or not. According to the result, the functional mortars of culture medium filled with fresh and sea water shows similar trend. The functional mortar for restraining algae growth performs that's role well.

Toxicity Effects of Copper on the Physiological Responses of Anabaena flos-aquae (Cyanophyceae) (구리독성이 Anabaena flos-aquae의 생리적 변화에 미치는 영향)

  • Ryu, Ji-Won;Choi, Eun-Joo;Rhie, Ki-Tae
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.2
    • /
    • pp.101-112
    • /
    • 2008
  • Effects of various concentrations of copper on growth change of blue-greenalgae Anabaena flos-aquae were studied. There was significant differences among cultures treated with various concentrations of copper in growth of algae with parameters of cell numbers, specific growth rate (SGR) and chlorophyll contents. Algal growth and SGR were inhibited on by effect of various concentrations of copper more than without copper (ANOVA, F=34.69 p<0.001, F=114.89, p<0.001). The SGRs of various concentrations of copper in media were higher than without copper on 8 days after copper treated. The mean of chlorophyll contents was 1.978 ${\mu}g{\cdot}mL^{-1}$ and 1.648 ${\mu}g{\cdot}mL^{-1}$, respectively, while those of algae in culture without copper was 3.179 ${\mu}g{\cdot}mL^{-1}$ (ANOVA, F=153.74, p<0.001). The cellular morphology was different between media of which copper treated and without copper. The colony of algae in media which copper treated was shorter than without copper. Effects of various concentrations of copper on growth change of blue-green-algae Anabaena flos-aquae occured variety changes of parameters of cell numbers, specific growth rate (SGR), chlorophyll contents and cellular morphology on growth of algae.