• 제목/요약/키워드: alcohol fermentation

Search Result 852, Processing Time 0.028 seconds

Utilization of Chitosan-glucan Complex Extracted from Ganoderma Iucidum Wastes as Bioflocculant (생물응집제로서 폐영지박 Chitosan-glucan 복합물의 이용성)

  • 오준현;조홍연;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.6
    • /
    • pp.770-776
    • /
    • 1995
  • For the purpose of development of non-toxic and biodegradable flocculant, chitosan complex was isolated from Ganoderma lucidum wastes. The isolated complex was identified as the expected chitosan-glucan complex by IR specta. The complex was extracted by treatment of 50% NaOH solution at 120$\circ$C for 5 hrs, namely optimal condition and solubilized with 2% acetic acid for fur-ther use as flocculant. Preliminary experiments showed that the solubilized complex had higher flocculation activity of 1.3 fold than commercial chitosan at 400 mg/l concentration in soybean curd wastewater. Also the solubilized complex removed 83% of MLSS and 60% of COD in the soybean curd wastewater treated by photosynthetic bacteria, 50% of turbidity and 21% of MLSS in sugar industry wastewater, and 90% of turbidity and 89% of MLSS in alcohol fermentation wastewater. Bacterial cell flocculation activities of the solubilized chitosan-glucan complex were 89% in Bacillus subtilis broth, 81% in Streptococcus lactis broth, and more than 90% in Escherichia coli broth after standing for 2 days. The results reveal that chitosan-glucan complex from Ganoderma lucidum wastes can substitute for commercial chitosan as non-toxic and biodegradable flocculant.

  • PDF

irrE, an Exogenous Gene from Deinococcus radiodurans, Improves the Growth of and Ethanol Production by a Zymomonas mobilis Strain Under Ethanol and Acid Stresses

  • Zhang, Ying;Ma, Ruiqiang;Zhao, Zhonglin;Zhou, Zhengfu;Lu, Wei;Zhang, Wei;Chen, Ming
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.7
    • /
    • pp.1156-1162
    • /
    • 2010
  • During ethanol fermentation, bacterial strains may encounter various stresses, such as ethanol and acid shock, which adversely affect cell viability and the production of ethanol. Therefore, ethanologenic strains that tolerate abiotic stresses are highly desirable. Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation, ultraviolet light, and desiccation, and therefore constitute an important pool of extreme resistance genes. The irrE gene encodes a general switch responsible for the extreme radioresistance of D. radiodurans. Here, we present evidence that IrrE, acting as a global regulator, confers high stress tolerance to a Zymomonas mobilis strain. Expression of the gene protected Z. mobilis cells against ethanol, acid, osmotic, and thermal shocks. It also markedly improved cell viability, the expression levels and enzyme activities of pyruvate decarboxylase and alcohol dehydrogenase, and the production of ethanol under both ethanol and acid stresses. These data suggest that irrE is a potentially promising gene for improving the abiotic stress tolerance of ethanologenic bacterial strains.

Laccase Production Using Pleurotus ostreatus 1804 Immobilized on PUF Cubes in Batch and Packed Bed Reactors: Influence of Culture Conditions

  • Prasad K. Krishna;Mohan S. Venkata;Bhaskar Y. Vijaya;Ramanaiah S. V.;Babu V. Lalit;Pati B. R.;Sarma P. N.
    • Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.301-307
    • /
    • 2005
  • The feasibility of laccase production by immobilization of Pleurotus ostreatus 1804 on polyurethane foam (PUF) cubes with respect to media composition was studied in both batch and reactor systems. Enhanced laccase yield was evidenced due to immobilization. A relatively high maximum laccase activity of 312.6 U was observed with immobilized mycelia in shake flasks compared to the maximum laccase activity of free mycelia (272.2 U). It is evident from this study that the culture conditions studied, i.e. biomass level, pH, substrate concentration, yeast extract concentration, $Cu^{2+}$ concentration, and alcohol nature, showed significant influence on the laccase yield. Gel electrophoretic analysis showed the molecular weight of the laccase produced by immobilized P. ostreatus to be 66 kDa. The laccase yield was significantly higher and more rapid in the packed bed reactor than in the shake flask experiments. A maximum laccase yield of 392.9 U was observed within 144 h of the fermentation period with complete glucose depletion.

Effects of Barley Koji and Legumes on the Quality and Fibrinolytic Activity of Korean Traditional Rice Wine (보리 입국과 두류 첨가가 전통주의 품질과 혈전용해활성에 미치는 영향)

  • 김재호;이주현;김형종;최신양;이종수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.7
    • /
    • pp.1066-1070
    • /
    • 2003
  • Effects of cereal kojis and legumes on alcohol fermentation and fibrinolytic activities of Korean traditional wines were investigated. The Korean traditional wine which was brewed by addition of 10% barley koji into the mash showed the greatest fibrinolytic activity of 20.0 U and good ethanol productivity (16.8%). The fibrinolytic activity was increased up to 26.0 U by addition of 50% of mungbean and its acceptability were improved by addition of jujube (3%) into the mash.

Preservation of Takju by Pasteurization (저온살균법에 의한 탁주의 보존성 증진)

  • 배상면;김헌진;고영희;오태광
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.3
    • /
    • pp.322-325
    • /
    • 1990
  • During transportation and preservation of Takju, alcohol fermentation has continued to produce $C0_2$ from residual sugar and frequently spoiled owing to bacterial contaminants wich produce organic acids. The authors could preserve Takju for more than 50 days at room temperature by pasteurization without any changes of quality. For the optimal condition of pasteurization, fresh Takju was heated at various temperatures and times. D-Value of the Saccharomyces sp. which isolated from Takju collected at seoul area was 19 see at $55^{\circ}C$. Non-spore forming bacterial contaminants, most of which known to cause acid-spoilage, were decreased when heated at $55^{\circ}C$ for 5 min. The optimal pasteurization condition of Takju was at $55^{\circ}C$ for 10 min. Spore forming bacterial contaminants, considered to be EuciiLw sp., were not sterilized after pasteurized at the optimal condition. However, the spore-forming bacteria could not increase any more and also not cause increment of acidity during preservation even at room temperature for 50 days. Reducing sugar was increased during storage of Takju after pasteurization. This suggests that the residual glucoamylase in Takju is still active after pasteurizsation and keep sweet taste.

  • PDF

Changes in microorganisms and Min Components during Takju Brewing by a Modified nuruk (개량누룩에 의한 탁주양조중 미생물과 중요성분 변화)

  • 이명숙
    • The Korean Journal of Food And Nutrition
    • /
    • v.12 no.3
    • /
    • pp.226-232
    • /
    • 1999
  • To evaluate the characteristics of modified nuruk made by inoculation and cultivation of Rhizopus jap-onicus T2, Aspergillus oryzae L2 and hansenula sp. BC26 three different Takju mashes were made with modified Nuruk commercial Nuruk and rice koji and the changes in microorganisms and major compon-ents of mashes were investigated uring brewing. The numbers of yeast kept higher in the mash of mod-ified Nuruk or rice koji. The numbers of lactic acid bacteria were high in mash of commercial Nuruk but those were not in mash of modified Nuruk or rice koji. all mashes showed stable pH in a day and the pH kept higher in mash of modified Nuruk than in that of commer-cial Nuruk or rice koji. Increase in the content of total acid was moderate in mash of modified Nuruk or rice koji but it was too much in that of commercial Nuruk. increase in the content of amino acid was much highr in mash of modified Nuruk or commercial Nuruk than in that of rice koji. Increase in the content of alcohol was more rapid in mash of modified nuruk or rice koji than in that of commercial Nur-uk. The content of reducing sugar kept highter in mash of commercial Nuruk or modified Nuruk than in that of rice koji. A small amount of modified Nuruk accomplished favorable fermentation showing nor-mal patterns in microbiological and physicochemical changes during brewing.

  • PDF

Biofuel Industry and Recent Research in USA (미국의 바이오연료와 연구 동향)

  • Lee, Joung-Kyong;Bransby, David
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.28 no.2
    • /
    • pp.129-138
    • /
    • 2008
  • Demand for alternatives to petroleum is increasing the production of biofuels from food crops such as corn, soybeans, sorghum and sugarcane, etc. At least for the next 5 years, ethanol demand will be increased greatly in the United States and in the world. Presently, most ethanol produced in the United States is corn (Zea mays) ethanol. As a result, especially in the Americas and Southeast Asia, agricultural land is diverted to biofuel production. Even though biofuel industry has many advantage including national security, economical, energetical and sustainable impacts, it is driving grain prices up and creating considerable concern about the potential negative impacts on a wide range of food products that depend on gain : chicken, pork, beef, and dairy products such as milk, cheese, yoghurt, cream and ice cream. Feedstock crops are crops such as switchgrass(Panicum virgatum, L.), corn stover and grasses that can be used in industrial processes such as fermentation into alcohol fuels. Feedstock is no compete with food. Furthermore it is friendly environmental bioenergy crops. In Korea, with increasing demand for fossil fuels the exploration of alternative sources of liquid fuel is inevitable. I suggest Korea need to research and to develop actively on feedstock for biofuel production through this review.

Processing of Onion Vinegar Beverage containing Omija Extract and Its Antimicrobial and Antioxidative Activity (오미자 첨가 양파초음료 제조 및 항균·항산화 활성)

  • Jeong, Eun-Jeong;Cha, Yong-Jun
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.1
    • /
    • pp.109-116
    • /
    • 2018
  • Onion vinegar, which has an undesirable flavor and taste formed through alcohol and acetic acid fermentation, possesses additives that can improve sensory quality. Thus, the objective of this study was to present an optimized blending ratio using response surface methods for an onion vinegar beverage by adding Omija extracts. This study was performed to formulate an Omija-onion vinegar beverage (OOVB) and investigate its antioxidant properties and antimicrobiological effects. The experimental design was conducted using an optimal mixture model of response surface methodology which generated eighteen experimental trials with overall acceptance as the responses. According to the statistical analyses, OOVB demonstrated a ratio containing onion vinegar, water, brown sugar, apple extracts and Omija extracts of 10, 72.3, 4.4, 12.2 and 1.1 (weight ratio), respectively. The OOVB revealed desirable nutrition values (phenolics compounds 19.3 mg/100 g, total flavonoids 3.1 mg/100 g, quercetin 1.9 mg/100). The OOVB displayed antibacterial effects in Gram negative Enterobacter aerogenes, Escherichia coli, Salmonella typhimurium and Gram positive Staphylococcus aureus. The findings revealed that OOVB was 18% in DPPH radical inhibitionand 11% in superoxide dismutase-like activity thus, OOVB has nutritional value and good quality as well as potential biological activities for functional beverages.

Characteristics of the Alcoholic Milk Product Fermented by Lactococcus lactis subsp. lactis TA29 and Saccharomyces exiguus SK2

  • Hong, Seok-San;Cha, Seong-Kwan;Kim, Wang-June;Koo, Young-Jo
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.50-53
    • /
    • 1996
  • A cultured milk product was made by fennenting 10$\%$ reconstituted skim milk with Lactococcus lactis subsp. lactis TA29 and Saccharomyces exiguus SK2. L. lactis TA29 and S. exiguus SK2 grew up to 1.0 $\times 10^9\;and\;2.0 \times 10^6$ cfu/ml, respectively. After the fermentation 21$\%$ of lactose was hydrolyzed, pH was lowered to 4.2, and titratable acidity and alcohol concentration were increased to 0.96 and 0.023$\%$, respectively. When the fermented milk was stored at $4{\circ}C$ for 9 days, the viable cell counts for L. lactis TA29 and S. exiguus SK2 were $6.5 \times 10^5\;and\;1.6 \times 10^6$ cfu/rnl, respectively. The alcoholic fermented milk prepared in this experiment was more inhibitory against some pathogenic bacteria including C. perfringens than commercial yoghurt products tested.

  • PDF

Ethanol production from starch by protoplast fusion between aspergillus oryzae and saccharomyces cerevisiae (사상균과 효모의 세포융합에 의한 녹말로부터의 에탄올 생산)

  • 이주실;이수연;이영록
    • Korean Journal of Microbiology
    • /
    • v.27 no.3
    • /
    • pp.221-224
    • /
    • 1989
  • Amylolytic filamentous fungus, Aspergillus oryzae and nonamylolytic sugar fermentable yeast, Saccharomyces cerevisiae were fused by protoplast fusion in order to develope microorganisms having their intergrated function. Aminoacid auxotrophic properties were used as a genetic marker of protoplast fusion, and 35% PEG 4000 was used as a fusogenic agent. Complementation frequengy of fusion was $4.6\times 10^{-6}$ Obtained fusants showed the morphology of yeast strains, the amylase activity and the ethanol productivity. Among the properties of the fusants, morphology and prototrophic property were sustained stably but their ethanol productivity from starch was reduced. Although fusant strains had 0.5-fold ethanol productivity compared to that of S. cerevisiae in glucose medium, they produced ethanol from strach by direct fermentation.

  • PDF