• 제목/요약/키워드: albedo

검색결과 281건 처리시간 0.029초

Current Status of KMTNet/DEEP-South Collaboration Research for Comets and Asteroids Research between SNU and KASI

  • BACH, Yoonsoo P.;YANG, Hongu;KWON, Yuna G.;LEE, Subin;KIM, Myung-Jin;CHOI, Young-Jun;Park, Jintae;ISHIGURO, Masateru;Moon, Hong-Kyu
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.82.2-82.2
    • /
    • 2017
  • Korea Microlensing Telescope Network (KMTNet) is one of powerful tools for investigating primordial objects in the inner solar system in that it covers a large area of the sky ($2{\times}2$ degree2) with a high observational cadence. The Deep Ecliptic Patrol of the Southern sky (DEEP-South) survey has been scanning the southern sky using KMTNet for non-bulge time (45 full nights per year) [1] since 2015 for examining color, albedo, rotation, and shape of the solar system bodies. Since 2017 January, we have launched a new collaborative group between Korea Astronomy and Space Science Institute (KASI) and Seoul National University (SNU) with support from KASI to reinforce mutual collaboration among these institutes and further to enhance human resources development by utilizing the KMTNet/DEEP-South data. In particular, we focus on the detection of comets and asteroids spontaneously scanned in the DEEP-South for (1) investigating the secular changes in comet's activities and (2) analyzing precovery and recovery images of objects in the NASA's NEOWISE survey region. In this presentation, we will describe our scientific objectives and current status on using KMTNet data, which includes updating the accuracy of the world coordinate system (WCS) information, finding algorithm of solar system bodies in the image, and doing non-sidereal photometry.

  • PDF

용평 알파인 경기장에서 겨울철 바람의 일변화 및 난류 특성분석 (An Analysis of the Wintertime Diurnal Wind Variation and Turbulent Characteristics over Yongpyong Alpine Slope)

  • 전혜림;김병곤;은승희;이영희;최병철
    • 대기
    • /
    • 제26권3호
    • /
    • pp.401-412
    • /
    • 2016
  • A 3D sonic anemometer has been installed at Yongpyong alpine slope since Oct. 23th 2014 to observe the slope winds and to analyze turbulent characteristics with the change in surface cover (grass and snow) and the synoptic wind strength. Eddy covariance method has been applied to calculate the turbulent quantity after coordinate transformation of a planar-fit rotation. We have carefully selected 3 good episodes in the winter season (23 October 2014 to 28 February 2015) for each category (9 days in total), such as grass and snow covers in case of weak synoptic wind condition, and grass cover of strong synoptic wind. The diurnal variations of the slope winds were well developed like the upslope wind in the daytime and downslope wind in the nighttime for both surface covers (grass and snow) in the weak synoptic forcing, when accordingly both heat and momentum fluxes significantly increased in the daytime and decreased in the nighttime. Meanwhile, diurnal variation of heat flux was not present on the snow cover probably in associated with significant fraction of sunlight reflection due to high albedo especially during the daytime in comparison to those on the grass cover. In the strong synoptic regime, the most dominant feature at Yongpyong, only the southeasterly downslope winds were steadily generated irrespective of day and night with significant increases in momentum flux and turbulent kinetic energy as well, which could suggest that local circulations are suppressed by the synoptic scale forcing. In spite of only one season analysis applied to the limited domain, this kind of an observation-based study will provide the basis for understanding of the local wind circulation in the complex mountain domain such as Gangwon in Korea.

남극 세종기지에서 복사 속 및 복사 가열률의 연직 분포 (The Vertical Distribution of Radiative Flux and Heating Rate at King Sejong Station in West Antarctica)

  • 이규태;이방용;이원학;지준범;이민경
    • Ocean and Polar Research
    • /
    • 제27권1호
    • /
    • pp.87-95
    • /
    • 2005
  • The vertical profiles of radiative flux and heating rate at King Sejong Station in West Antarctica were calculated with radiative transfe model by Chou and Suarez (1999) and Chou et al (2001). To run this model, the profiles of temperature, mixing ratios of water vapor and ozone at King Sejng Station were derived from ECMWF Reanalysis data. The surface temperature and albedo were also derived from NCEP/NCAR Reanalysis and CERES data. The radiative flux strongly depends on the cloud optical path length that was calculated using the measured W-h data and model by Chou and Lee(1996). Durins the period of $2000{\sim}2001$ (12 and 18 UTC), the correlation coefficient between calculated and measured downward solar fluxes at surface was 0.90 and the coefficient for downward longwave flux was 0.61. The calculated net heating rates of surface layer decreased during the same period, the trend of which was in accordance with the decrease of measured temperature.

대기 복사 모형에 의한 세종기지에서의 복사학적 특징: 복사 대류 평형 모형을 이용한 기후 변화 연구 (Radiative Properties of King Sejong Station in West Antarctica with the Radiative Transfer Model: Climate Change using Radiative Convective Equilibrium Model)

  • 이규태;이방용;지준범;윤영준;이원학
    • 지구물리
    • /
    • 제9권1호
    • /
    • pp.27-36
    • /
    • 2006
  • 연직 공기 기둥에 대한 복사 및 대류 과정이 포함된 일차원 복사-대류 평형 모형을 구축하였고, 이 모형을 이용하여 남극 세종기지에서 복사-대류 평형 온도를 계산 하고 분석하였다. 이 모형의 반응도에서 지표면 알베도와 태양 천정각의 코사인 및 이산화탄소 증가는 지표면에서의 복사-대류 평형 온도를 감소시켰다. 그리고 구름 광학두께가 비교적 큰 하층운은 지표면 온도를 감소시키나, 구름 광학두께가 작은 상층운은 온실효과 때문에 지표면 온도를 증가시켰다. 남극 세종기지의 44년 (1958∼2001)의 기간에 대하여 계산된 지표면에서의 복사-대류 평형 온도의 연변화는 0.012oC/년이었다. 마찬가지로 13년 동안(1989∼2001)의 자료에 대한 복사-평형 온도 변화는 0.01oC/월이었으며, 동일한 기간의 관측 자료 분석 결과로는 0.005oC/월의 변화를 나타내었다.

  • PDF

남극 세종 기지 주변의 복사, 기온 및 풍향의 특징 (The Characteristics of Radiation, Temperature and Wind Direction around King Sejong Station, Antarctica)

  • 최태진;이방용;김성중;박유민;윤영준
    • 지구물리
    • /
    • 제9권4호
    • /
    • pp.397-408
    • /
    • 2006
  • 남극 반도와 그 주변에서의 온난화는 시간적, 공간적 변동이 크기 때문에 이 지역에서의 국지 기후를 이해하는 것이 필요하다. 이 연구의 목적은 남극 세종 기지 주변에서의 지표 복사, 기온 그리고 풍향의 특징을 밝혀내고, 그 변수들간의 상관 관계를 조사하는 것이다. 연구지는 연간 15-20 Wm-2의 복사 에너지를 흡수하지만, 여름 (12월-1월)에는 평균적으로 85 Wm-2의 복사 에너지를 흡수하였다. 이 흡수량은 남극의 다른 지역에 비해 상당히 큰 값이다. 월 평균 기온은 -7.7-2.8oC 이었으며, 매년 다른 변동을 보였다. 북서, 서 및 동풍이 주풍이었으며, 풍향의 변동이 기온 변동을 설명할 수 있었다. 찬 동풍과 따뜻한 북서 및 북풍 빈도의 변동이 특히 여름철 지표 복사 수지에도 크게 영향을 주었으며, 이 시기의 대기와 지면 간의 에너지 교환에 풍향이 중요한 역할을 하는 것으로 보인다.

  • PDF

Radiative Properties of Greenhouse Gases, Aerosols and Clouds in Korea

  • Moon, Yun-Seob;Bang, So-Young;Oh, Sung-Nam
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2003년도 International Symposium on Clean Environment
    • /
    • pp.51-54
    • /
    • 2003
  • We analyzed radiative properties of aerosols, $CO^{2}$ and clouds using Optical Properties of Aerosols and Clouds(OPAC) and the Column Radiation Model (CRM). From OPAC, if the soot component is disregarded, dust-like components depict the highest extinction values in the solar spectral range and the lowest. single scattering albedoes, which are attributable to the presence of large particles. In the dust aerosol, the high absorptivity in the infrared may induce a warming of the lower atmospheric layer in the nighttime. The radiative properties of aerosols, clouds and double $CO^{2}$ using the CRM model at Seoul (37N, 127.4 E) on 3 April 2003 were calculated. The solar zenith angle is 65˚ and the surface albedo is 0.1836 during the clear day. The aerosol optical depth change 0.14 to 1.7, which is derived during Asian dust days in Korea. At this time, abedo by aerosols is considered as 0.3. In cloudy condition, the short wave cloud forcing on both the TOA and the surface is -193.89 $Wm^{-2}$ and -195.03 $Wm^{-2}$, respectively, and the long wave cloud forcing is 19.58 $Wm^{-2}$ and 62.08 $Wm^{-2}$, respectively. As a result, the net radiative cloud forcing is -174.31 $Wm^{-2}$ and -132.95 $Wm^{-2}$, respectively. We calculate also radiative heating rates by double $CO^{2}$ during the clear day. The $CO^{2}$ volumn mixing ratio is 3.55E-4.

  • PDF

Monitoring of Climate Change of Northeast Asia and Background Atmosphere in Korea

  • Oh, Sung-Nam;Chung, Hyo-Sang;Choi, Jae-Cheon;Bang, So-Young;Hyun, Myung-Suk
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2003년도 International Symposium on Clean Environment
    • /
    • pp.232-235
    • /
    • 2003
  • In general, the parameters of climate change include aerosol chemical compounds, aerosol optical depth, greenhouse gases(carbon dioxide, CFCs, methane, nitrous oxide, tropospheric ozone), ozone distribution, precipitation acidity and chemical compounds, persistent organic pollutants and heavy metals, radioactivity, solar radiation including ultra-violet and standard meteorological parameters. Over the last ten years, the monitoring activities of Korea regarding to the climate change have been progressed within the WMO GAW and ACE-Asia IOP programs centered at the observation sites of Anmyeon and Jeju Gosan islands respectively. The Greenhouse gases were pointed out that standard air quality monitoring techniques are required to enhance data comparability and that data presentation formats need to be harmonized and easily understood. Especially, the impact of atmospheric aerosols on climate depends on their optical properties, which, in turn, are a function of aerosol size distribution and the spectral reflective indices. Aerosol optical depth and single scattering albedo in the visible are used as the two basic parameters in the atmospheric temperature variation studies. The former parameter is an indicator of the attenuation power of aerosols, while the latter represents the relative strength of scattering and absorption by aerosols. For aerosols with weak absorption, surface temperature decreases as the optical depth increases because of the domination of backscattering. For aerosols with strong absorption, however, warming could occur as the optical depth increases. The objective of the study is to characterize the means, variability, and trends of Greenhouse gases and aerosol properties on a regional basis using data from its baseline observatories in Korea peninsula. A further goal is to understand the factors that control radiative forcing of the greenhouse and aerosol.

  • PDF

Study on the possibility of the aerosol and/or Yellow dust detection in the atmosphere by Ocean Scanning Multispectral Imager(OSMI)

  • Chung, Hyo-Sang;Park, Hye-Sook;Bag, Gyun-Myeong;Yoon, Hong-Joo;Jang, Kwang-Mi
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1998년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.409-414
    • /
    • 1998
  • To examine the detectability of the aerosol and/or Yellow dust from China crossing over the Yellow sea, three works carried out as follows , Firstly, a comparison was made of the visible(VIS), water vapor(WV), and Infrared(IR) images of the GMS-5 and NOAA/AVHRR on the cases of yellow sand event over Korea. Secondly, the spectral radiance and reflectance(%) was observed during the yellow sand phenomena on April, 1998 in Seoul using the GER-2600 spectroradiometer, which observed the reflected radiance from 350 to 2500 nm in the atmosphere. We selected the optimum wavelength for detecting of the yellow sand from this observation, considering the effects of atmospheric absorption. Finally, the atmospheric radiance emerging from the LOWTRAN-7 radiative transfer model was simulated with and without yellow sand, where we used the estimated aerosol column optical depth ($\tau$ 673 nm) in the Meteorological Research Institute and the d'Almeida's statistical atmospheric aerosol radiative characteristics. The image analysis showed that it was very difficult to detect the yellow sand region only by the image processing because the albedo characteristics of the sand vary irregularly according to the density, size, components and depth of the yellow sand clouds. We found that the 670-680 nm band was useful to simulate aerosol characteristics considering the absorption band from the radiance observation. We are now processing the simulation of atmospheric radiance distribution in the range of 400-900 nm. The purpose of this study is to present the preliminary results of the aerosol and/or Yellow dust detectability using the Ocean Scanning Multispectral Imager(OSMI), which will be mounted on KOMPSAT-1 as the ocean color monitoring sensor with the range of 400-900 nm wavelength.

  • PDF

An Efficiency Assessment for Reflectance Normalization of RapidEye Employing BRD Components of Wide-Swath satellite

  • Kim, Sang-Il;Han, Kyung-Soo;Yeom, Jong-Min
    • 대한원격탐사학회지
    • /
    • 제27권3호
    • /
    • pp.303-314
    • /
    • 2011
  • Surface albedo is an important parameter of the surface energy budget, and its accurate quantification is of major interest to the global climate modeling community. Therefore, in this paper, we consider the direct solution of kernel based bidirectional reflectance distribution function (BRDF) models for retrieval of normalized reflectance of high resolution satellite. The BRD effects can be seen in satellite data having a wide swath such as SPOT/VGT (VEGETATION) have sufficient angular sampling, but high resolution satellites are impossible to obtain sufficient angular sampling over a pixel during short period because of their narrow swath scanning when applying semi-empirical model. This gives a difficulty to run BRDF model inferring the reflectance normalization of high resolution satellites. The principal purpose of the study is to estimate normalized reflectance of high resolution satellite (RapidEye) through BRDF components from SPOT/VGT. We use semi-empirical BRDF model to estimated BRDF components from SPOT/VGT and reflectance normalization of RapidEye. This study used SPOT/VGT satellite data acquired in the S1 (daily) data, and within this study is the multispectral sensor RapidEye. Isotropic value such as the normalized reflectance was closely related to the BRDF parameters and the kernels. Also, we show scatter plot of the SPOT/VGT and RapidEye isotropic value relationship. The linear relationship between the two linear regression analysis is performed by using the parameters of SPOTNGT like as isotropic value, geometric value and volumetric scattering value, and the kernel values of RapidEye like as geometric and volumetric scattering kernel Because BRDF parameters are difficult to directly calculate from high resolution satellites, we use to BRDF parameter of SPOT/VGT. Also, we make a decision of weighting for geometric value, volumetric scattering value and error through regression models. As a result, the weighting through linear regression analysis produced good agreement. For all sites, the SPOT/VGT isotropic and RapidEye isotropic values had the high correlation (RMSE, bias), and generally are very consistent.

위성자료 기반의 단층태양복사모델을 이용한 한반도 태양-기상자원지도 개발 (Development of Solar-Meteorological Resources Map using One-layer Solar Radiation Model Based on Satellites Data on Korean Peninsula)

  • 지준범;최영진;이규태;조일성
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.56.1-56.1
    • /
    • 2011
  • The solar and meteorological resources map is calculated using by one-layer solar radiation model (GWNU model), satellites data and numerical model output on the Korean peninsula. The Meteorological input data to perform the GWNU model are retrieved aerosol optical thickness from MODIS (TERA/AQUA), total ozone amount from OMI (AURA), cloud fraction from geostationary satellites (MTSAT-1R) and temperature, pressure and total precipitable water from output of RDAPS (Regional Data Assimilation and Prediction System) and KLAPS (Korea Local Analysis and Prediction System) model operated by KMA (Korea Meteorological Administration). The model is carried out every hour using by the meteorological data (total ozone amount, aerosol optical thickness, temperature, pressure and cloud amount) and the basic data (surface albedo and DEM). And the result is analyzed the distribution in time and space and validated with 22 meteorological solar observations. The solar resources map is used to the solar energy-related industries and assessment of the potential resources for solar plant. The National Institute of Meteorological Research in KMA released $4km{\times}4km$ solar map in 2008 and updated solar map with $1km{\times}1km$ resolution and topological effect in 2010. The meteorological resources map homepage (http://www.greenmap.go.kr) is provided the various information and result for the meteorological-solar resources map.

  • PDF