• Title/Summary/Keyword: ajoene

Search Result 7, Processing Time 0.02 seconds

Systemic Approaches Identify a Garlic-Derived Chemical, Z-ajoene, as a Glioblastoma Multiforme Cancer Stem Cell-Specific Targeting Agent

  • Jung, Yuchae;Park, Heejoo;Zhao, Hui-Yuan;Jeon, Raok;Ryu, Jae-Ha;Kim, Woo-Young
    • Molecules and Cells
    • /
    • v.37 no.7
    • /
    • pp.547-553
    • /
    • 2014
  • Glioblastoma multiforme (GBM) is one of the most common brain malignancies and has a very poor prognosis. Recent evidence suggests that the presence of cancer stem cells (CSC) in GBM and the rare CSC subpopulation that is resistant to chemotherapy may be responsible for the treatment failure and unfavorable prognosis of GBM. A garlic-derived compound, Z-ajoene, has shown a range of biological activities, including anti-proliferative effects on several cancers. Here, we demonstrated for the first time that Z-ajoene specifically inhibits the growth of the GBM CSC population. CSC sphere-forming inhibition was achieved at a concentration that did not exhibit a cytotoxic effect in regular cell culture conditions. The specificity of this inhibitory effect on the CSC population was confirmed by detecting CSC cell surface marker CD133 expression and biochemical marker ALDH activity. In addition, stem cell-related mRNA profiling and real-time PCR revealed the differential expression of CSC-specific genes, including Notch, Wnt, and Hedgehog, upon treatment with Z-ajoene. A proteomic approach, i.e., reverse-phase protein array (RPPA) and Western blot analysis, showed decreased SMAD4, p-AKT, 14.3.3 and FOXO3A expression. The protein interaction map (http://string-db.org/) of the identified molecules suggested that the AKT, ERK/p38 and $TGF{\beta}$ signaling pathways are key mediators of Z-ajoene's action, which affects the transcriptional network that includes FOXO3A. These biological and bioinformatic analyses collectively demonstrate that Z-ajoene is a potential candidate for the treatment of GBM by specifically targeting GBM CSCs. We also show how this systemic approach strengthens the identification of new therapeutic agents that target CSCs.

Biological Functions of Organosulfur Compounds in Allium Vegetables (Allium속 식물 유래 함유황 유기화합물의 생리적 유용성)

  • 전향숙;김현정
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.6
    • /
    • pp.1412-1423
    • /
    • 1999
  • This review contains a discussion of the physiological activity of the components of Allium vegetables. Organosulfur compounds in Allium vegetables, such as ajoene, diallyl sulfides and S allylcysteine, have cancer preventive activity in chemically induced animal cancer models. They also have inhibitory effects on proliferation of cancer cells in vitro. Allium vegetables have lipid and cholesterol lowering effect, and platelet aggregation inhibitory activity that help the prevention of cardiovascular diseases. Sulfur con taining compounds, especially allicin and ajoene, have antimicrobial activities against gram negative, positive bacteria and fungi. Moreover, Allium organosulfur compounds such as S allylcysteine showed reducing effects on the senescence related symptoms including cognition. Allium organosulfur compounds have significant importance in food industry as both biologically active ingredients and savory.

  • PDF

Organosulfur Compounds from Allium sativum and Physiological Activities (마늘의 유기유황성분과 생리활성)

  • 권순경
    • Biomolecules & Therapeutics
    • /
    • v.11 no.1
    • /
    • pp.8-32
    • /
    • 2003
  • Garlic(Allium sativum L.) is one of the oldest cultivated plants and has been used throughout the world as food supplement and folk medicine for thousands of years. In modem times a number of garlic derived products are introduced on the market as health food supplement in ever growing scale. In 1844 German chemist Wertheim investigated the garlic first time chemically and thereafter many kinds of organosulfur compounds were isolated and their biological activities were elucidated scientifically. The main biological activities are antibacterial, antifungal, antithrombotic, cholesterol-lowering, antineoplastic and hepatoprotective activities. Chemical works as well as therapeutic and preventive effects of garlic are reviewed.

Growth Inhibitory Activity of Sulfur Compounds of Garlic against Pathogenic Microorganisms (마늘 황화합물의 병원성미생물 번식억제작용)

  • Kyung Kyu-Hang
    • Journal of Food Hygiene and Safety
    • /
    • v.21 no.3
    • /
    • pp.145-152
    • /
    • 2006
  • Efforts have been made to explore the possibility of using garlic as an antimicrobial therapeutic agent since garlic extract and its individual sulfur compounds show antimicrobial activities against all kinds of microorganisms including bacteria, molds, yeasts and protozoa. Staphylococcus aureus has been the most studied bacteria along with many other Gram positive and negative pathogenic bacteria, including species of the genera Clostridium, Mycobacterium, Escherichia, Klebsiella, Bacillus, Salmonella and Shigella. Candida albicans has been the most studied among the eukaryotic microorganisms. A pathogenic protozoa, Giardia intestinalis, was also tested. All the microorganisms tested was inhibited by garlic extract or its sulfur components. Garlic has been known to be growth inhibitory only when fresh garlic is crushed, since allicin-generating reaction is enzyme-catalyzed. Allicin is known to be growth inhibitory through a non-specific reaction with sulfhydryl groups of enzyme proteins that are crucial to the metabolism of microorganisms. Another plausible hypothesis is that allicin inhibits specific enzymes in certain biological processes, e.g. acetyl CoA synthetase in fatty acid synthesis in microorganisms. Allicin transforms into other compounds like ajoene and various sulfides which are also inhibitory to microorganisms, but not as potent as their mother compound. It is reported recently that garlic heated at cooking temperatures is growth inhibitory especially against yeasts, and that the growth inhibitory compound is allyl alcohol thermally generated from alliin in garlic.

Characterization of Allicin Transformation Products and Determination of Allicin (알리신 변형체의 특성과 알리신의 정량)

  • Jung, Joo-Yeon;Kim, Sung-Jin;Hur, Moon-Hye;Lee, Eun-Yup;Kim, Myoung-Soo;Ahn, Moon-Kyu
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.3
    • /
    • pp.472-480
    • /
    • 1994
  • Allicin was synthesized for the purpose of identification an dquantitation of a pharmaceutical dosage form in soft capsules. The identified transformed products fro allicin were dially disulfide , 3-vinyl-[4H]-1, 2-dithiin and 2-vinyl-[4H]-1, 3-dithiin in gas chromatrographic conditions and dially disulfide and ajoene in HPLC. Allicin is thermally unstable , it may be completely decomposed to vinyl dithiin isomers in GC conditions. For that reason, allicin was not found directly in the pharmaceutical dosage forms. In HPLC conditions, mobile phase was methanol /water containing 0.1% formic acid(65/35) and column was $\mu$-Bondapak C18. Detection wa-velength was 254nm. The retention time of allicin was 6.98min. The calibration ranger for allicin was 10 $\mu\textrm{g}$/ml to 200$\mu\textrm{g}$/ml and correlation coefficient(r) was 0.987.

  • PDF

Drug Target Identification and Elucidation of Natural Inhibitors for Bordetella petrii: An In Silico Study

  • Rath, Surya Narayan;Ray, Manisha;Pattnaik, Animesh;Pradhan, Sukanta Kumar
    • Genomics & Informatics
    • /
    • v.14 no.4
    • /
    • pp.241-254
    • /
    • 2016
  • Environmental microbes like Bordetella petrii has been established as a causative agent for various infectious diseases in human. Again, development of drug resistance in B. petrii challenged to combat against the infection. Identification of potential drug target and proposing a novel lead compound against the pathogen has a great aid and value. In this study, bioinformatics tools and technology have been applied to suggest a potential drug target by screening the proteome information of B. petrii DSM 12804 (accession No. PRJNA28135) from genome database of National Centre for Biotechnology information. In this regards, the inhibitory effect of nine natural compounds like ajoene (Allium sativum), allicin (A. sativum), cinnamaldehyde (Cinnamomum cassia), curcumin (Curcuma longa), gallotannin (active component of green tea and red wine), isoorientin (Anthopterus wardii), isovitexin (A. wardii), neral (Melissa officinalis), and vitexin (A. wardii) have been acknowledged with anti-bacterial properties and hence tested against identified drug target of B. petrii by implicating computational approach. The in silico studies revealed the hypothesis that lpxD could be a potential drug target and with recommendation of a strong inhibitory effect of selected natural compounds against infection caused due to B. petrii, would be further validated through in vitro experiments.

Antimicrobial Activity of Chemical Substances Derived from S-Alk(en)yl-L-Cysteine Sulfoxide (Alliin) in Garlic, Allium sativum L.

  • Choi, Mi-Kyung;Chae, Kyung-Yeon;Lee, Joo-Young;Kyung, Kyu-Hang
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • Garlic (Allium sativum L.) contains a specific sulfur compound, the S-allyl derivative of L-cysteine sulfoxide, and has long been known for its antimicrobial activity against various microorganisms, including bacteria, fungi, and protozoa. The principal antimicrobial compound of garlic is S-allyl-L-propenethiosulfinate (allicin) which is generated by an enzyme, alliinase (L-cysteine sulfoxide lyase), from S-allyl-L-cysteine sulfoxide (alliin). This compound exists exclusively in Allium as a major non-protein sulfur-containing amino acid. S-Allyl-L-propenethiosulfinate belongs to the chemical group of thiosulfinates and is a highly potent antimicrobial. The potency of garlic extract is reduced during storage since thiosulfinates are unstable and are degraded to other compounds some of which do not have antimicrobial activity. Diallyl polysulfides and ajoene are sulfur compounds derived from allicin that do possess antimicrobial activity. It was recently found that garlic becomes antimicrobial on heating at cooking temperatures, and that the compound responsible for this is allyl alcohol, which is generated from alliin by thermal degradation.