• Title/Summary/Keyword: airspace coefficient

Search Result 4, Processing Time 0.017 seconds

Acoustic Characteristics of a Helmholtz Resonator with Built-In Sound Absorption Panel (흡음판이 내장된 헬름홀츠 공명기의 흡음특성)

  • Yang, Yoon-Sang;Baek, Du-San;Lee, Dong-Hoon;Park, Choon-keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.121-124
    • /
    • 2014
  • Many of research on noise reduction techniques have been progressed for the improvement of noise environment in subway train. There are many way to noise reduction techniques in the tunnel, but it has been reported as an alternative to attach sound absorption material on tunnel wall. For this reason sound absorption material has been studied for application of tunnel. The objective of this study is to investigate design parameters on a Helmholtz resonator with built-in sound absorption panel for the reduction of the tunnel noise in the subway. Sound absorption panel composed of the perforated panel with sub-millimeter holes and the airspace backed a rigid wall or between panels. The experiment is performed through the change of number of perforated panel, cross sectional area and the depth of airspace of the sound absorption panel under the normal incidence sound.

  • PDF

Whole-life wind-induced deflection of insulating glass units

  • Zhiyuan Wang;Junjin Liu;Jianhui Li;Suwen Chen
    • Wind and Structures
    • /
    • v.37 no.4
    • /
    • pp.289-302
    • /
    • 2023
  • Insulating glass units (IGUs) have been widely used in buildings in recent years due to their superior thermal insulation performance. However, because of the panel reciprocating motion and fatigue deterioration of sealants under long-term wind loads, many IGUs have the problem of early failure of watertight properties in real usage. This study aimed to propose a statistical method for wind-induced deflection of IGU panels during the whole life service period, for further precise analysis of the accumulated fatigue damage at the sealed part of the edge bond. By the estimation of the wind occurrence regularity based on wind pressure return period, the events of each wind speed interval during the whole life were obtained for the IGUs at 50m height in Beijing, which are in good agreement with the measured data. Also, the wind-induced deflection analysis method of IGUs based on the formula of airspace coefficient was proposed and verified as an improvement of the original stiffness distribution method with the average relative error compared to the test being about 3% or less. Combining the two methods above, the deformation of the outer and inner panes under wind loads during 30 years was precisely calculated, and the deflection and stress state at selected locations were obtained finally. The results show that the compression displacement at the secondary sealant under the maximum wind pressure is close to 0.3mm (strain 2.5%), and the IGUs are in tens of thousands of times the low amplitude tensile-compression cycle and several times to dozens of times the relatively high amplitude tensile-compression cycle environment. The approach proposed in this paper provides a basis for subsequent studies on the durability of IGUs and the wind-resistant behaviors of curtain wall structures.

Machine Learning Based Capacity Prediction Model of Terminal Maneuvering Area (기계학습 기반 접근관제구역 수용량 예측 모형)

  • Han, Sanghyok;Yun, Taegyeong;Kim, Sang Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.3
    • /
    • pp.215-222
    • /
    • 2022
  • The purpose of air traffic flow management is to balance demand and capacity in the national airspace, and its performance relies on an accurate capacity prediction of the airport or airspace. This paper developed a regression model that predicts the number of aircraft actually departing and arriving in a terminal maneuvering area. The regression model is based on a boosting ensemble learning algorithm that learns past aircraft operational data such as time, weather, scheduled demand, and unfulfilled demand at a specific airport in the terminal maneuvering area. The developed model was tested using historical departure and arrival flight data at Incheon International Airport, and the coefficient of determination is greater than 0.95. Also, the capacity of the terminal maneuvering area of interest is implicitly predicted by using the model.

Particulate Behavior in Subway Airspace

  • Sohn, Jong-Ryeul;Kim, Jo-Chun;Kim, Min-Young;Son, Youn-Suk;Sunwoo, Young
    • Asian Journal of Atmospheric Environment
    • /
    • v.2 no.1
    • /
    • pp.54-59
    • /
    • 2008
  • The most pivotal approach to improve subway indoor air quality (IAQ) is to examine the emission sources and particulate behavior. Therefore, the main objective of this study is to investigate the particulate behavior in the subway. In order to examine IAQ in the subway, a sampling and measurement campaign was carried out for 35 sites during the summer and winter seasons from May, 2005 to February, 2006. In case of 24 hour measurement, the mean concentrations ($PM_{10}$-24 hr) of platform and waiting room were $156.18{\pm}53.79{\mu}g/m^3$ and $111.00{\pm}53.31{\mu}g/ m^3$. Besides, as a result of 20 hour measurement, the mean concentrations ($PM_{10}$-20 hr) of platform and waiting room were $146.09{\pm}53.71{\mu}g/m^3$ and $99.08{\pm}42.77{\mu}g/m^3$, respectively. In general, $PM_{10}$-24 hr was higher than $PM_{10}$-20 hr, and both PM concentrations showed a high correlation coefficient (r=0.803). It was found that the $PM_{2.5}$ concentration ($l09.56{\pm}28.24{\mu}g/m^3$) in winter was higher than that ($83.66{\pm}57.82{\mu}g/m^3$) in summer.