• Title/Summary/Keyword: airgap MMF function

Search Result 2, Processing Time 0.014 seconds

Minimization of Cogging Torque in Permanent Magnet Motors by Stator Pole Shoe Pairing and Magnet Arc Design using Genetic Algorithm (유전자 알고리즘을 이용한 영구자석 모터의 고정자 잇날 페어링 및 자석 극호각 설계에 의한 코깅 토오크의 저감 설계)

  • Eom, Jae-Bu;Hwang, Geon-Yong;Hwang, Sang-Mun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • Cogging torque is often a principal source of vibration and acoustic noise in high precision spindle motor applications. In this paper, cogging torque is analytically calculated using energy method to show that Fourier spectra of airgap permeance function and airgap MMF function are the most important design parameters to control cogging torque. To control these functions, stator pole shoe pairing and magnet arc design are proposed to minimize cogging torque. As for optimization technique, genetic algorithm is applied to handle trade-off effects of design parameters. Results show that the proposed method can reduce the cogging torque effectively.

Cogging Torque and Acoustic Noise Reduction in High Torque BLDC Motors by Teeth Pairings (고정자 잇날 페어링을 이용한 고출력 토크 BLDC 전동기의 코깅 토크 및 소음 저감)

  • Lee, Sang-Min;Hwang, Sang-Mun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.3
    • /
    • pp.97-103
    • /
    • 1999
  • This paper investigates reduction of acoustic noise and cogging torque in a BLDC motor with larger stator slot open width. Using energy method, cogging torque is analytically determined with airgap MMF function and airgap permeance function and confirmed by FEM analysis. It shows that the cogging torque is firstly governed by NL GNL BNL with the fundamental period of NL, where NL is the least common multiple of the number of slots and the number of poles, GNL, airgap permeance function and BNL, airgap MMF function. It also shows that there exist several tooth width which minimizes the cogging torque, for the motors that smaller slot open width or stator teeth notching is not available. And it proposes a teeth pairing with two different tooth width which can effectively eliminate the cogging torque and thus the acoustic noise. Experimental results show that the proposed teeth pairing reduces the cogging torque by 85% and the acoustic noise by 3.1dB.

  • PDF