• Title/Summary/Keyword: airfoil

Search Result 732, Processing Time 0.033 seconds

Study on Flexible Airfoil in Low Reynolds Number Flow Field (저 레이놀즈 수 유동장에서의 유연 익형에 대한 연구)

  • Gwon, Gi Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.1-7
    • /
    • 2003
  • In the study, aeroelastic behaviors and aerodynamic performances of flexible airfoil in low Reynolds number environment are evaluated. To facilitate the present study, flexible airfoil in modeled through attaching massless membrane in portion of the upper CLARK-Y airfoil surface, which is often proposed low Reynolds number airfoil. The behavior of membrane in governed by aerodynamic forces and membrane equilibrium equation. Nondimensional parameter deducted by nondimensionalizing the membrane equilibrium equation, which represents the interaction between fluid and membrane has a great influence on membrane aeroelastic behavior. Changing the starting point of the membrane is conducted on aerodynamic performances. As a result, the value of nondimensional parameter should almost linearly increase according to moving the starting point of the membrane surface toward the trailing edge.

Reduced Frequency Effects on the Near-Wake of an Oscillating Elliptic Airfoil

  • Chang, Jo-Won;Eun, Hee-Bong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1234-1245
    • /
    • 2003
  • An experimental study was carried out to investigate the reduced frequency effect on the near-wake of an elliptic airfoil oscillating in pitch. The airfoil was sinusoidally pitched around the center of the chord between -5$^{\circ}$and +25$^{\circ}$angles of attack at an airspeed of 3.4 m/s. The chord Reynolds number and reduced frequencies were 3.3 ${\times}$10$^4$, and 0.1, 0.7, respectively Phase-averaged axial velocity and turbulent intensity profiles are presented to show the reduced frequency effects on the near-wake behind the airfoil oscillating In pitch. Axial velocity defects in the near-wake region have a tendency to increase in response to a reduced frequency during pitch up motion, whereas it tends to decrease during pitch down motion at a positive angle of attack. Turbulent intensity at positive angles of attack during the pitch up motion decreased in response to a reduced frequency, whereas turbulent intensity during the pitch down motion varies considerably with downstream stations. Although the true instantaneous angle of attack compensated for a phase-lag is large, the wake thickness of an oscillating airfoil is not always large because of laminar or turbulent separation.

Aerodynamics of a 2-D Flat-plate Airfoil with Tripwire (2차원 평판날개에서의 Tripwire가 공력에 미치는 영향)

  • Je, Du-Ho;Lee, Jongwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.575-581
    • /
    • 2013
  • In this paper, we experimentally investigated the effects of attached cylindrical tripwires on the aerodynamic performance. The research was carried out with a simple two-dimensional (2-D) rectangular airfoil fabricated from thin flat-plate aluminium, with elliptical leading and trailing edges. Tripwires of varying widths and thicknesses, and attack angles of $-5^{\circ}{\sim}20^{\circ}$ were used to investigate the aerodynamic characteristics (e.g. lift and drag forces) of the airfoil. We found that attaching the tripwires to the lower surface of the airfoil enhanced the lift force and increased the lift-to-drag ratio for low attack angles. However, attaching the tripwires to the upper surface tended to have the opposite effects. Moreover, we found that attaching the tripwires to the trailing edge had similar effects as a Gurney flap. The aerodynamic characteristics of the flat-plate airfoil with tripwires can be used to develop passive control devices for aircraft wings in order to increase their aerodynamic performance when gliding at low attack angles.

CFD Simulation of NACA 2412 airfoil with new cavity shapes

  • Merryisha, Samuel;Rajendran, Parvathy;Khan, Sher Afghan
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.2
    • /
    • pp.131-148
    • /
    • 2022
  • The paper presents the surface-modified NACA 2412 airfoil performance with variable cavity characteristics such as size, shape and orientation, by numerically investigated with the pre-validation study. The study attempts to improve the airfoil aerodynamic performance at 30 m/s with a variable angle of attack (AOA) ranging from 0° to 20° under Reynolds number (Re) 4.4×105. Through passive surface control techniques, a boundary layer control strategy has been enhanced to improve flow performance. An intense background survey has been carried out over the modifier orientation, shape, and numbers to differentiate the sub-critical and post-critical flow regimes. The wall-bounded flows along with its governing equations are investigated using Reynolds Average Navier Strokes (RANS) solver coupled with one-equational transport Spalart Allmaras model. It was observed that the aerodynamic efficiency of cavity airfoil had been improved by enhancing maximum lift to drag ratio ((l/d) max) with delayed flow separation by keeping the flow attached beyond 0.25C even at a higher angle of attack. Detailed investigation on the cavity distribution pattern reveals that cavity depth and width are essential in degrading the early flow separation characteristics. In this study, overall general performance comparison, all the cavity airfoil models have delayed stalling compared to the original airfoil.

Multi-objective optimization of printed circuit heat exchanger with airfoil fins based on the improved PSO-BP neural network and the NSGA-II algorithm

  • Jiabing Wang;Linlang Zeng;Kun Yang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2125-2138
    • /
    • 2023
  • The printed circuit heat exchanger (PCHE) with airfoil fins has the benefits of high compactness, high efficiency and superior heat transfer performance. A novel multi-objective optimization approach is presented to design the airfoil fin PCHE in this paper. Three optimization design variables (the vertical number, the horizontal number and the staggered number) are obtained by means of dimensionless airfoil fin arrangement parameters. And the optimization objective is to maximize the Nusselt number (Nu) and minimize the Fanning friction factor (f). Firstly, in order to investigate the impact of design variables on the thermal-hydraulic performance, a parametric study via the design of experiments is proposed. Subsequently, the relationships between three optimization design variables and two objective functions (Nu and f) are characterized by an improved particle swarm optimization-backpropagation artificial neural network. Finally, a multi-objective optimization is used to construct the Pareto optimal front, in which the non-dominated sorting genetic algorithm II is used. The comprehensive performance is found to be the best when the airfoil fins are completely staggered arrangement. And the best compromise solution based on the TOPSIS method is identified as the optimal solution, which can achieve the requirement of high heat transfer performance and low flow resistance.

Design of Low Noise Airfoil for Use on Small Wind Turbines (소형 풍력발전기 소음 저감을 위한 익형 설계 연구)

  • Kim, Tae-Hyung;Lee, Seung-Min;Kim, Ho-Geon;Lee, Soo-Gab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.465-465
    • /
    • 2009
  • Wind power is one of the most reliable renewable energy sources and the installed wind turbine capacities are increasing radically every year. Although wind power has been favored by the public in general, the problem with the impact of wind turbine noise on people living in the vicinity of the turbines has been increased. Low noise wind turbine design is becoming more important as noise is spreading more adverse effect of wind turbine to public. This paper demonstrates the design of 10 kW class wind turbines, each of three blades, a rotor diameter 6.4m, a rated rotating speed 200 rpm and a rated wind speed 10 m/s. The optimized airfoil is dedicated for the 75% spanwise position because the dominant source of a wind turbine blade has been known as trailing edge noise from the outer 25% of the blade. Numerical computations are performed for incompressible flow and for Mach number at 0.145 and for Reynolds numbers at $1.02{\times}10^6$ with a lift performance, which is resistant to surface contamination and turbulence intensity. The objective in the low design process is to reduce noise emission, while sustaining high aerodynamic efficiency. Dominant broadband noise sources are predicted by semi-empirical formulas composed of the groundwork by Brooks et al. and Lowson associated with typical wind turbine operation conditions. During the airfoil redesign process, the aerodynamic performance is analyzed to minimize the wind turbine power loss. The results obtained from the design process show that the design method is capable of designing airfoils with reduced noise using a commercial 10 kW class wind turbine blade airfoil as a basis. The new optimized airfoil clearly indicates reduction of total SPL about 3 dB and higher aerodynamic performance.

  • PDF

Study on the Affects of Mounting Axisymmetric Inlet to Airframe

  • Ando, Yohei;Matsuo, Akiko;Kojima, Takayuki;Maru, Yusuke;Sato, Tetsuya
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.699-702
    • /
    • 2004
  • In this study, the affect of mounting axisymmetrical supersonic inlet to airfoil, which has 65 degree swept angle was numerically investigated. The parameter for this calculation are tree stream Mach number M=2.0 and 2.5, the distance between inlet spike and airfoil lower surface $L_{sw}$/$R_{cowl}$ = 1.21-1.54 and angle of attack to the airfoil 0-4. The mass capture ratio improved 3points in M=2.0 condition and 1points in M=2.5 while the mass capture ratio without airfoil surface was 57% and 71 % for each case. These are the result from increase of density and change of velocity deflection by the shock wave structure formed between inlet and airfoil surface. On the other hand, the distortion of Mach number at cowl lip plane increased by 13% in M=2.0, 3% in M=2.5 condition. The effects of the angle attack on the mass capture ratio is greater than that of the shock wave interaction between inlet and cowl, but the effects to the distortion is smaller in the range of this calculation condition. In the condition of M=2.0 with 4 degrees of angle of attack, inlet distortion of Mach number is mainly caused by the affects of the shock wave interaction between inlet and airfoil surface, while the largest angle of the velocity vector in the radial direction at cowl lip plane is caused by the affect of angle of attack. This large velocity vector made the flow inside the cowl subsonic and caused spillage, which interfere with the boundary layer of airfoil surface.

  • PDF

Numerical Study of the Aerodynamic Characteristics of an Airfoil with Thickness Uncertainty for a Wind Tunnel Testing (두께의 불확실성을 갖는 풍동시험 익형모델의 공력특성에 관한 수치해석 연구)

  • Yi, Tae-Hyeong;Kwon, Ki-Jung;Kim, Keun-Taek;Ahn, Seok-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.475-484
    • /
    • 2012
  • Numerical investigation is performed to understand the effects of thickness uncertainty of a supporting airfoil due to manufacturing processes on the aerodynamic characteristics of an airfoil used for measuring data in a wind tunnel testing. This is done by comparing the coefficients of lift, drag and moment of the airfoils. In this work, the airfoil model consists of three parts, one located in the center for measuring and two outer parts used for supporting. The study is carried out with a NACA64-418 airfoil and the turbulence model of Transition SST. It is found that the effect of thickness uncertainty of the airfoils used for supporting is not significant to the performance of the test airfoil at various angles of attack and Reynolds numbers.

Free surface effects on 2-D airfoils and 3-D wings moving over water

  • Bal, Sakir
    • Ocean Systems Engineering
    • /
    • v.6 no.3
    • /
    • pp.245-264
    • /
    • 2016
  • The iterative boundary element method (IBEM) developed originally before for cavitating two-dimensional (2-D) and three-dimensional (3-D) hydrofoils moving under free surface is modified and applied to the case of 2-D (two-dimensional) airfoils and 3-D (three-dimensional) wings over water. The calculation of the steady-state flow characteristics of an inviscid, incompressible fluid past 2-D airfoils and 3-D wings above free water surface is of practical importance for air-assisted marine vehicles such as some racing boats including catamarans with hydrofoils and WIG (Wing-In-Ground) effect crafts. In the present paper, the effects of free surface both on 2-D airfoils and 3-D wings moving steadily over free water surface are investigated in detail. The iterative numerical method (IBEM) based on the Green's theorem allows separating the airfoil or wing problems and the free surface problem. Both the 2-D airfoil surface (or 3-D wing surface) and the free surface are modeled with constant strength dipole and constant strength source panels. While the kinematic boundary condition is applied on the airfoil surface or on the wing surface, the linearized kinematic-dynamic combined condition is applied on the free surface. The source strengths on the free surface are expressed in terms of perturbation potential by applying the linearized free surface conditions. No radiation condition is enforced for downstream boundary in 2-D airfoil and 3-D wing cases and transverse boundaries in only 3-D wing case. The method is first applied to 2-D NACA0004 airfoil with angle of attack of four degrees to validate the method. The effects of height of 2-D airfoil from free surface and Froude number on lift and drag coefficients are investigated. The method is also applied to NACA0015 airfoil for another validation with experiments in case of ground effect. The lift coefficient with different clearance values are compared with those of experiments. The numerical method is then applied to NACA0012 airfoil with the angle of attack of five degrees and the effects of Froude number and clearance on the lift and drag coefficients are discussed. The method is lastly applied to a rectangular 3-D wing and the effects of Froude number on wing performance have been investigated. The numerical results for wing moving under free surface have also been compared with those of the same wing moving above free surface. It has been found that the free surface can affect the wing performance significantly.

Global Shape Optimization of Airfoil Using Multi-objective Genetic Algorithm (다목적 유전알고리즘을 이용한 익형의 전역최적설계)

  • Lee, Ju-Hee;Lee, Sang-Hwan;Park, Kyoung-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1163-1171
    • /
    • 2005
  • The shape optimization of an airfoil has been performed for an incompressible viscous flow. In this study, Pareto frontier sets, which are global and non-dominated solutions, can be obtained without various weighting factors by using the multi-objective genetic algorithm An NACA0012 airfoil is considered as a baseline model, and the profile of the airfoil is parameterized and rebuilt with four Bezier curves. Two curves, front leading to maximum thickness, are composed of five control points and the rest, from maximum thickness to tailing edge, are composed of four control points. There are eighteen design variables and two objective functions such as the lift and drag coefficients. A generation is made up of forty-five individuals. After fifteenth evolutions, the Pareto individuals of twenty can be achieved. One Pareto, which is the best of the . reduction of the drag furce, improves its drag to $13\%$ and lift-drag ratio to $2\%$. Another Pareto, however, which is focused on increasing the lift force, can improve its lift force to $61\%$, while sustaining its drag force, compared to those of the baseline model.