• Title/Summary/Keyword: aircrew exposure

Search Result 5, Processing Time 0.025 seconds

Analysis of Factors Affecting Radiation Knowledge among Aircrew (항공 승무원의 방사선 지식에 영향을 미치는 요인 분석)

  • Shin, Hyeongho;Park, Sangshin
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.1
    • /
    • pp.96-102
    • /
    • 2020
  • Objectives: This study identified factors impacting radiation knowledge among aircrew, who are affected by cosmic radiation exposure due to their occupational environment. Methods: In September 2019 we conducted an online survey of aircrew through a Google link. We evaluated the level of radiation knowledge using a ten-item (10 points) questionnaire. The following exploratory variables were evaluated in relationship with the level of radiation knowledge using univariable linear regression models: sex, age, duration of employment, position level, company, marriage, education level, personal/family history of disease, and the number of times acquiring information on radiation through various channels (internet searching, watching television, reading newspaper, conversation about radiation with aircrew/non-aircrew, in-house training). With a p of 0.2 in univariable models, we built a multivariable linear regression model using a stepwise selection method. Results: The average radiation knowledge score of the 356 respondents was 7.22. Univariable linear regression analysis showed that radiation knowledge of the aircrew was associated with their company, position level, age, and number of conversations with other aircrew members. Our multivariable model showed that the radiation knowledge level of aircrew decreased as they had more conversations about radiation with other aircrew members and as their age increased. Conclusions: Korean air crew showed a lower level of radiation knowledge as their age and the number of conversations with colleagues increased. The study suggests that more education is needed in order for aircrew to gain accurate radiation knowledge.

Calculation of Route Doses for Korean-based International Airline Routes using CARI-6 and Estimation of Aircrew Exposure (CARI-6를 이용한 국제선 노선별 선량 및 항공승무원의 피폭선량 평가)

  • Hong, J.H.;Kwon, J.W.;Jung, J.H.;Lee, J.K.
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.2
    • /
    • pp.141-150
    • /
    • 2004
  • Dose rate characteristics of cosmic radiation field at flight altitudes were analyzed and the route doses to the personnels on board due to cosmic-ray were calculated for Korean-based commercial international airline routes using CARI-6. Annual individual doses to aircrew and the collective effective dose of passengers were estimated by applying the calculated route doses to the flight schedules of aircrew and the air travel statistics of Korea. The result shows that the annual doses to aircrew, around 2.62 mSv, exceed the annual dose limit of public and are comparable to doses of the group of workers occupationally exposed. Therefore it is necessary to consider the frequent flyers as well as the aircrew as the occupational exposure group. The annual collective dose to 11 million Korean passengers in 2001 appeared to be 136 man-Sv. The results should be modified when the dose rates of cosmic radiation at high altitude are revised by taking into account the changes in the radiation weighting factors for protons and neutrons as given in ICRP 92.

Radiation Dose Measurement and Model Comparison at the Flight Level (비행고도 상에서의 우주방사선 관측 및 모델 비교)

  • Yi, Wonhyeong;Kim, Jiyoung;Jang, Kun-Il
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.2
    • /
    • pp.91-97
    • /
    • 2018
  • High-energy charged particles are comprised of galactic cosmic rays and solar energetic particles which are mainly originated from the supernova explosion, active galactic nuclei, and the Sun. These primary charged particles which have sufficient energy to penetrate the Earth's magnetic field collide with the Earth's upper atmosphere, that is $N_2$ and $O_2$, and create secondary particles and ionizing radiation. The ionizing radiation can be measured at commercial flight altitude. So it is recommended to manage radiation dose of aircrew as workers under radiation environment to protect their health and safety. However, it is hard to deploy radiation measurement instrument to commercial aircrafts and monitor radiation dose continuously. So the numerical model calculation is performed to assess radiation exposure at flight altitude. In this paper, we present comparison result between measurement data recorded on several flights and estimation data calculated using model and examine the characteristics of the radiation environment in the atmosphere.

Case-Control Study of Occupational Acute Myeloid Leukemia in the Republic of Korea

  • Min Young Park;Hyoung-Ryoul Kim;Jun-Pyo Myong;Byung-Sik Cho;Hee-Je Kim;Mo-Yeol Kang
    • Safety and Health at Work
    • /
    • v.14 no.4
    • /
    • pp.451-456
    • /
    • 2023
  • Background: We conducted a case-control study to identify high-risk occupations and exposure to occupational hazards for acute myeloid leukemia (AML). Methods: When patients with AML admitted to the Department of Hematology in the study hospital for the first time are referred to the Department of Occupational and Environmental Medicine, data on occupation are collected by investigators to evaluate work-relatedness. Community-based controls were recruited through an online survey agency, and four controls per case were matched. Occupational information was estimated using structured questionnaires covering 27 specific occupations and 32 exposure agents. Conditional logistic regression analysis was performed by pairing cases and controls. Results: In the analysis of the risk of AML according to occupational classification, a significant association was found in paint manufacturing or painting work (OR = 2.22, 95% CI: 1.03-4.81) and aircrew (OR = 6.00, 95% CI: 1.00-35.91) in males, and in pesticide industry (OR = 6.89, 95% CI: 1.69-28.07) and cokes and steel industry (OR = 2.00, 95% CI: 1.18-22.06) in ≥60 years old. Moreover, the risk of AML increased significantly as the cumulative exposure to thinners increased. In the analyses stratified by sex and age, the association between pesticide exposure and AML was significant in males (OR = 3.28, 95% CI: 1.10-9.77) and in ≥60 years old (OR = 6.22, 95% CI: 1.48-26.08). Conclusion: This case-control study identified high-risk occupational groups in the Republic of Korea including paint manufacturers and painters, aircrew, and those who are occupationally exposed to pesticides or paint thinners.

Preliminary Study on Applicability of Accumulate Personal Neutron Dosimeter for Cosmic-ray Exposure of Aviators (운항승무원의 우주방사선 피폭 평가에 있어 누적형 개인 중성자 선량계의 적용가능성 예비 연구)

  • Kim, Hyeong-Jin;Chang, Byung-Uck;Byun, Jong-In;Song, Myeong Han;Kim, Jung-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.1
    • /
    • pp.44-51
    • /
    • 2013
  • ICRP recommended that cosmic ray exposure to the pilot and cabin crew would be considered as an occupational exposure due to their relatively high exposure. Since 2012 with the Act No. 10908 (Natural radiation management), the guideline of cosmic ray exposure to the pilot was established in Korea. The applicability of the solid-state nuclear track detector for personal dose assessment of pilot and cabin crew was evaluated. Dose linearity and angle dependence of dosimeters to the neutron were evaluated by $^{252}Cf$ neutron emitting source. The track density has a good agreement with the dose ($r^2$=0.99) and highly dependent on the degree of an angular of the dosimeter to the neutron source. In addition, the dosimeters (SSNTD) were exposed to cosmic ray in an aircraft during its cruising for more than two months in collaboration with Airline Pilots Association of Korea. Although the correlation between the track density from aircraft cruising altitude and expected neutron dose is low, however RSNS dosimeter could be used for personal neutron dosimeter. For application of RSNS as a personal dosimeter for pilot and cabin crew, additional studies are required.