• Title/Summary/Keyword: aircraft modelling

Search Result 43, Processing Time 0.019 seconds

Modelling and simulation of a closed-loop electrodynamic shaker and test structure model for spacecraft vibration testing

  • Waimer, Steffen;Manzato, Simone;Peeters, Bart;Wagner, Mark;Guillaume, Patrick
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.2
    • /
    • pp.205-223
    • /
    • 2018
  • During launch a spacecraft is subjected to a variety of dynamical loads transmitted through the launcher to spacecraft interface or air-born transmission excitations in the acoustic pressure field inside the fairing. As a result, spacecraft are tested on ground to ensure and demonstrate the global integrity of the structure against these loads, to screen the flight hardware for quality of workmanship and to validate mathematical models. This paper addresses the numerical modelling and simulation of the low frequency sine and random vibration tests performed on electrodynamic shaker facilities to comprise the mechanical-borne transmission loads through the launcher to spacecraft interface. Consequently, the paper reviews techniques and methodologies to derive a reliable and representative coupled virtual vibration testing simulation environment based on experimental data. These technologies are explored with the main objectives to ensure a stable, reliable and accurate control while testing. As a result, the use of the derived simulation models in combination with the added value of improved control and signal processing algorithms can lead to a safer and smoother vibration test control of the entire environmental test campaign.

Topography Analysis in High Speed Working by Flat Endmill (엔드밀에 의한 고속가공시 표면형상 해석)

  • Bae, H.J.;Lee, S.J.;Seo, Y.B.;Park, H.S.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.1 no.1
    • /
    • pp.79-88
    • /
    • 2002
  • High speed machining system have been used in industrial because it is effective to a material manufacturing with various shape. Recently the end-milling processing is needed the high-precise technique with good surface roughness and rapid time in aircraft, automobile part and molding industry. Therefore this study proposed to decide best manufacturing cutting condition for surface roughness and rapid manufacturing tune by using computer Image processing system and 3D modelling. Until the 16,000 rpm, the surface roughness is decreased rapidly, but it is not over that. The 22,000 rpm is the spindle speed with the optimum surface in the high speed end-milling. In the case of the feed rate with 2,000 mm/mm and 8,000 mm/mm, the surface roughness is better than 4,000 mm/min and 6,000 mm/min. By using the 3D modelling, it is effectively represented shape characteristics of working surface m high speed end-milling.

  • PDF

Numerical comparison between lattice and honeycomb core by using detailed FEM modelling

  • Giuseppe, Pavano
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.5
    • /
    • pp.377-400
    • /
    • 2022
  • The aim of this work is a numerical comparison (FEM) between lattice pyramidal-core panel and honeycomb core panel for different core thicknesses. By evaluating the mid-span deflection, the shear rigidity and the shear modulus for both core types and different core thicknesses, it is possible to define which core type has got the best mechanical behaviour for each thickness and the evolution of that behaviour as far as the thickness increases. Since a specific base geometry has been used for the lattice pyramidal core, the comparison gives us the opportunity to investigate the unit cell strut angle giving the higher mechanical properties. The presented work considers a detailed FEM modelling of a standard 3-point bending test (ASTM C393/C393M Standard Practice). Detailed FEM modelling addresses to detailed discretization of cores by means of beam elements for lattice core and shell elements for honeycomb core. Facings, instead, have been modelled by using shell elements for both sandwich panels. On lattice core structure, elements of core and facings are directly connected, to better simulate the additive manufacturing process. Otherwise, an MPC-based constraint between facings and core has been used for honeycomb core structure. Both sandwich panels are entirely built of Aluminium alloy. Prior to compare the two models, the FEM sandwich panel model with lattice pyramidal core needs to be validated with 3-point bending test experimental results, in order to ensure a good reliability of the FEM approach and of the comparison. Furthermore, the analytical validation has been performed according to Allen's theory. The FEM analysis is linear static with an increasing midspan load ranging from 50N up to 500N.

How to Use an Optimization-Based Method Capable of Balancing Safety, Reliability, and Weight in an Aircraft Design Process

  • Johansson, Cristina;Derelov, Micael;Olvander, Johan
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.404-410
    • /
    • 2017
  • In order to help decision-makers in the early design phase to improve and make more cost-efficient system safety and reliability baselines of aircraft design concepts, a method (Multi-objective Optimization for Safety and Reliability Trade-off) that is able to handle trade-offs such as system safety, system reliability, and other characteristics, for instance weight and cost, is used. Multi-objective Optimization for Safety and Reliability Trade-off has been developed and implemented at SAAB Aeronautics. The aim of this paper is to demonstrate how the implemented method might work to aid the selection of optimal design alternatives. The method is a three-step method: step 1 involves the modelling of each considered target, step 2 is optimization, and step 3 is the visualization and selection of results (results processing). The analysis is performed within Architecture Design and Preliminary Design steps, according to the company's Product Development Process. The lessons learned regarding the use of the implemented trade-off method in the three cases are presented. The results are a handful of solutions, a basis to aid in the selection of a design alternative. While the implementation of the trade-off method is performed for companies, there is nothing to prevent adapting this method, with minimal modifications, for use in other industrial applications.

The Effect of 2008 Beijing Olympic on Korean Air Quality (2008년 북경 올림픽이 한반도 대기질에 미치는 영향)

  • Song, Hyung-Do;Choi, Jin-Soo;Hong, Sung-Chel;Chang, lim-Seok;Kim, Jung-Soo;Lee, Suk-Jo
    • Journal of Environmental Science International
    • /
    • v.18 no.6
    • /
    • pp.655-665
    • /
    • 2009
  • This study aims to identify the impacts of air quality in the Korean Peninsula according to the China's environmental policies in preparation of the Beijing 2008 Olympic Games. The measurement of emission variations in China, aircraft measurement, and modelling were carried out. The reduction measures in Beijing, China and its emission changes resulted in $30{\sim}65%$ in decrease out of the total emissions within the Beijing region, whereas when it comes to the whole nation of China, the reduction rate was about $4{\sim}9%$. Comparing the concentration of the air pollutants in Seoul and Ganghwa in August 2008 during around the period of Beijing Olympic Games with one in $2004{\sim}2007$ showed that the $SO_2$ concentrations in the past was above 5ppb, while the concentration in the 2008 olympic period was 4ppb and below. The NOx at the Seokmori site in Ganghwa tended to be lower in concentration in 2008 than in between $2004{\sim}2007$. As for $O_3$ and $PM_{2.5}$, the concentration tended to be rather low since August 11. The air current track that showed during the period of aircraft measurement presented to be flowed into Korea through the Northeast part of China and the coast of Bohai Bay, while the concentrations of $SO_2$. NOx, and $O_3$ over the west sea on August 20 and 24 were 0.54 (0.28ppb), 0.86 (1.84ppb), and 54.0 (41.5ppb) respectively, similar or lower than the ones measured in the past in the similar current patterns. The modelling result showed similar patterns to the data of aircraft measurement, in particular in $SO_2$. Overall, the reduction measures in Beijing, China affected directly and indirectly the air quality in the Korean peninsular, but the impact was not significant as it was momentary and limited to the intended area.

Use of finite and infinite elements in static analysis of pavement

  • Patil, V.A.;Sawant, V.A.;Deb, Kousik
    • Interaction and multiscale mechanics
    • /
    • v.3 no.1
    • /
    • pp.95-110
    • /
    • 2010
  • In recent years, study of the static response of pavements to moving vehicle and aircraft loads has received significant attention because of its relevance to the design of pavements and airport runways. The static response of beams resting on an elastic foundation and subjected to moving loads was studied by several researchers in the past. However, most of these studies were limited to steady-state analytical solutions for infinitely long beams resting on Winkler-type elastic foundations. Although the modelling of subgrade as a continuum is more accurate, such an approach can hardly be incorporated in analysis due to its complexity. In contrast, the two-parameter foundation model provides a better way for simulating the underlying soil medium and is conceptually more appealing than the one-parameter (Winkler) foundation model. The finite element method is one of the most suitable mathematical tools for analysing rigid pavements under moving loads. This paper presents an improved solution algorithm based on the finite element method for the static analysis of rigid pavements under moving vehicular or aircraft loads. The concrete pavement is discretized by finite and infinite beam elements, with the latter for modelling the infinity boundary conditions. The underlying soil medium is modelled by the Pasternak model allowing the shear interaction to exist between the spring elements. This can be accomplished by connecting the spring elements to a layer of incompressible vertical elements that can deform in transverse shear only. The deformations and forces maintaining equilibrium in the shear layer are considered by assuming the shear layer to be isotropic. A parametric study is conducted to investigate the effect of the position of moving loads on the response of pavement.

A development of an Optimization-Based Flight Scheduler and Its Simulation-Based Application to Real Airports (최적화 기법 기반의 항공기 스케줄러 개발 및 실제 공항의 수치적 모사)

  • Ryu, MinSeok;Song, Jae-Hoon;Choi, Seongim
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.9
    • /
    • pp.681-688
    • /
    • 2013
  • Several problems caused by inevitable increment of airplane have been issued. The most effective solution to solve the issues is considered as establishing appropriate Air Traffic Management (ATM) that reduces aircraft's delay at an airport and intensify the airport's capacity. The purpose of this paper is to produce the optimum aircraft schedules that maximize the aircraft throughput by smooth air traffic flow near terminal area of an airport In this paper, mathematical formulations of the scheduling problem are firstly specified. Based on the mathematical modelling, an Optimization-Based Flight Scheduler that provides the optimum flight schedules for arriving aircraft is developed by introducing the Mixed Integer Linear Programming(MILP) and the Genetic Algorithms(GA). With this scheduler, we calculated the optimum schedules to compare to real schedule data from an Incheon Airport. As a result, it is validated that aircraft throughput produced by the optimum schedule is much better than that of the schedule from the Incheon airport. The optimization-based flight scheduler is expected to deal with problems due to the aircraft saturation in near future.

Sediment Fluxes in Shelf Seas Modelling and Monitoring

  • Prandel, David
    • Journal of the korean society of oceanography
    • /
    • v.37 no.3
    • /
    • pp.144-153
    • /
    • 2002
  • This is a review paper, assessing progress reported in a Special Issue (Prandle and Lane, 2000) of Coastal Engineering focusing on simulation of SPM in the North Sea, against issues over a diverse range of shelf seas and their coastal margins. The broad objectives of reproducing the characteristics of sediment fluxes off an open coast and relating these to tidal and wave forcing were achieved. However, accurate computation of these fluxes remains sensitive to largely empirical coefficients used in determining erosion and deposition rates. Bed roughness strongly influences both these coefficients and the associated near-bed current magnitudes (including wave impact thereon). Bed roughness can change significantly over a tidal cycle and dramatically over seasons or in the course of a major event. Accurate simulation of sediment fluxes on a day-to-day basis is constrained by dependency on the initial distribution of mobile sediments. The latter depends on rates and locations of original sources and the time history of preceding events. Remote sensing via aircraft could provide data for assimilation into such models to circumvent these constraints. The approaches described here can be readily applied to other coastal regions to indicate the likely distributions and pathways of known sediment sources. However quantitative simulations will require an associated observational programme. A subsequent stage is to understand the evolving balance between the forecasted sediment movement - the resulting morphological adjustments and thence modifications to the prevailing tidal current and wave regimes.

Modelling and FEA-simulation of the anisotropic damping of thermoplastic composites

  • Klaerner, Matthias;Wuehrl, Mario;Kroll, Lothar;Marburg, Steffen
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.3
    • /
    • pp.331-349
    • /
    • 2016
  • Stiff and light fibre reinforced composites as used in air- and space-craft applications tend to high sound emission. Therefore, the damping properties are essential for the entire structural and acoustic engineering. Viscous damping is an established and reasonably linear model of the dissipation behaviour. Commonly, it is assumed to be isotropic and constant over all modes. For anisotropic materials it depends on the fibre orientation as well as the elastic and thermal material properties. To portray the orthogonal anisotropic behaviour, a model for unidirectional fibre reinforced plastics (frp) has been developed based on the classical laminate theory by ADAMS and BACON starting in 1973. Their approach includes three damping coefficients - for longitudinal damping in fibre direction, damping transversal to the fibres and shear based dissipation. The damping of a laminate is then accumulated layer wise including the anisotropic stiffness. So far, the model has been applied mainly to thermoset matrix materials. In this study, an experimental parameter estimation for different thermoplastic frp with angle ply and cross ply layups was carried out by measuring free vibrations of cantilever beams. The results show potential and limits of the ADAMS/BACON damping criterion. In addition, a possibility of modelling the anisotropic damping is shown. The implementation in standard FEA software is used to study the influence of boundary conditions on the damping properties and numerically estimate the radiated sound power of thin-walled frp parts.

An efficient C1 beam element via multi-scale material adaptable shape function

  • El-Ashmawy, A.M.;Xu, Yuanming
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.351-368
    • /
    • 2022
  • Recently, promising structural technologies like multi-function, ultra-load bearing capacity and tailored structures have been put up for discussions. Finite Element (FE) modelling is probably the best-known option capable of treating these superior properties and multi-domain behavior structures. However, advanced materials such as Functionally Graded Material (FGM) and nanocomposites suffer from problems resulting from variable material properties, reinforcement aggregation and mesh generation. Motivated by these factors, this research proposes a unified shape function for FGM, nanocomposites, graded nanocomposites, in addition to traditional isotropic and orthotropic structural materials. It depends not only on element length but also on the beam's material properties and geometric characteristics. The systematic mathematical theory and FE formulations are based on the Timoshenko beam theory for beam structure. Furthermore, the introduced element achieves C1 degree of continuity. The model is proved to be convergent and free-off shear locking. Moreover, numerical results for static and free vibration analysis support the model accuracy and capabilities by validation with different references. The proposed technique overcomes the issue of continuous properties modelling of these promising materials without discarding older ones. Therefore, introduced benchmark improvements on the FE old concept could be extended to help the development of new software features to confront the rapid progress of structural materials.